Normalized defining polynomial
\( x^{21} - 7 x^{20} + 11 x^{19} - x^{18} + 29 x^{17} - 31 x^{16} - 207 x^{15} + 283 x^{14} + 178 x^{13} - 774 x^{12} + 1676 x^{11} - 1948 x^{10} - 1140 x^{9} + 7012 x^{8} - 10652 x^{7} + 6060 x^{6} + 7976 x^{5} - 23032 x^{4} + 27464 x^{3} - 19144 x^{2} + 7592 x - 1352 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2322524889444393135652695649026048=2^{33}\cdot 3^{19}\cdot 7^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{12} a^{18} - \frac{1}{12} a^{17} - \frac{1}{12} a^{16} + \frac{1}{12} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{156} a^{19} + \frac{1}{156} a^{18} + \frac{1}{26} a^{17} + \frac{2}{39} a^{16} + \frac{1}{78} a^{15} + \frac{2}{13} a^{14} - \frac{7}{39} a^{13} + \frac{5}{39} a^{12} + \frac{1}{4} a^{11} + \frac{15}{52} a^{10} + \frac{5}{13} a^{9} + \frac{11}{26} a^{8} - \frac{7}{78} a^{7} - \frac{17}{39} a^{6} - \frac{7}{26} a^{5} + \frac{1}{39} a^{4} + \frac{1}{3} a^{3} - \frac{4}{13} a^{2} - \frac{16}{39} a - \frac{1}{3}$, $\frac{1}{1349933116221384844900415189670132} a^{20} + \frac{128899562074912135568049015890}{337483279055346211225103797417533} a^{19} + \frac{18514599655427677214950074584687}{449977705407128281633471729890044} a^{18} - \frac{459411226849999712961624324300}{112494426351782070408367932472511} a^{17} - \frac{42626116010484438431056550490706}{337483279055346211225103797417533} a^{16} - \frac{41898815309426918254922840629879}{674966558110692422450207594835066} a^{15} - \frac{32057973416076859604553453265399}{337483279055346211225103797417533} a^{14} + \frac{58972395546708073782439580893441}{337483279055346211225103797417533} a^{13} + \frac{70413467027224424433372678948677}{449977705407128281633471729890044} a^{12} - \frac{238939400124630745128460216890503}{674966558110692422450207594835066} a^{11} - \frac{144449053613510673806143824502441}{1349933116221384844900415189670132} a^{10} + \frac{101225738880848590563324150905195}{337483279055346211225103797417533} a^{9} + \frac{75477038983664411257234243586637}{224988852703564140816735864945022} a^{8} + \frac{54832686366589830416787876968111}{674966558110692422450207594835066} a^{7} + \frac{324148181246947986584350159102543}{674966558110692422450207594835066} a^{6} - \frac{315277597925814937325581022141899}{674966558110692422450207594835066} a^{5} - \frac{21954504914845042606936019344513}{337483279055346211225103797417533} a^{4} + \frac{13473712490419927581637764850390}{112494426351782070408367932472511} a^{3} + \frac{54366645675632163560370873607640}{112494426351782070408367932472511} a^{2} + \frac{66410842507754536128251705897387}{337483279055346211225103797417533} a - \frac{4757888123272304949734440779353}{25960252235026631632700292109041}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 353864063.8162742 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.1176.1, 7.1.784147392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.13 | $x^{14} - 4 x^{12} + 8 x^{11} - 6 x^{10} - 4 x^{9} - 6 x^{8} + 4 x^{7} + 6 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 6$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.13.1 | $x^{14} - 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||