Normalized defining polynomial
\( x^{21} - 3 x^{20} + 43 x^{19} - 22 x^{18} + 643 x^{17} - 168 x^{16} + 9322 x^{15} - 4975 x^{14} + 22402 x^{13} - 76493 x^{12} + 369038 x^{11} - 673269 x^{10} - 1084871 x^{9} - 7262324 x^{8} + 1057380 x^{7} - 59828972 x^{6} + 80384535 x^{5} + 506225172 x^{4} + 410279552 x^{3} - 1834135886 x^{2} - 1809587593 x - 800223271 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(227911598834310569903130581367217291392841=11^{2}\cdot 13^{2}\cdot 71^{10}\cdot 1850356597^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13, 71, 1850356597$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{14} a^{19} - \frac{1}{14} a^{16} + \frac{3}{14} a^{15} + \frac{3}{14} a^{14} - \frac{3}{14} a^{13} + \frac{2}{7} a^{12} - \frac{2}{7} a^{11} - \frac{3}{7} a^{10} + \frac{5}{14} a^{9} - \frac{1}{7} a^{8} - \frac{1}{14} a^{7} - \frac{1}{2} a^{6} + \frac{3}{14} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{20} - \frac{16718200572584035376073596526251039900514763846993567386204188513947156010720574458440033761157}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{19} - \frac{2026518613009584758435111371834944994225093964568152260888758642953998824666552672560337383227}{210811077436454278037372394721949533379749602082718446532057372281482431900430918300457774667714} a^{18} + \frac{104485354213986891877819449271353092241214887073558311538616550533658325790881027800439736258784}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{17} - \frac{73158572456829895630831477068119071217364898695927971574939331675799190759928428031350004641789}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{16} + \frac{65928038557593389149033362142207310854711730160778017226826508625386532975739395913504700883346}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{15} + \frac{266655667155634491520374915449246427858163244507144617286168705834059303408503481523015694315031}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{14} - \frac{551044793072983415207061239839470328618295042743848625715422622683066207075460733288315047325747}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{13} + \frac{196025133901144209050286870235077823940878836014949730123771943359132379812283820714729583043553}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{12} + \frac{210848727855799872731403436540598782554489311483195968174815391482859039943969143097394020889911}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{11} - \frac{20150972923742391307767188537884869957224536647729909422953986060870372376932384055400377954870}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{10} - \frac{310223619281921108345548055313505383497476163972481374681064809338171706005918539166030454424888}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{9} - \frac{341165885855943426150016972583967861310167462886855560496049932806236299172788922618519387664059}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{8} + \frac{2523955904715892540334796650025373090168202844922198132636465406431421920611413971779496975800}{6895689448855981057297227864736666979711435582144995914600007504534472071509422561229927208757} a^{7} - \frac{643596347790415311865250286212003290055482435142810715879599109992679898203664035741141887142163}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{6} + \frac{92574613596543648102454882116919374265633934349568644021794262425687514790399151829793374768532}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{5} + \frac{215337753125652816196270280167564679743477454176758431767540451503571868339269017681444405249799}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{4} + \frac{129171046980419611315141320058656238457640840094842755737443150265649199606380563771569352674001}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a^{3} - \frac{424964577836185421893740335220824747914320863648587141919098118058732494342407428946260221568225}{1475677542055179946261606763053646733658247214579029125724401605970377023303016428103204422673998} a^{2} - \frac{351247357231788039985672492267696622991977187986883689892923492068088063442268168032826286673728}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999} a + \frac{200383577507133537921573802220213091051442636006924649585358532171740385732435224297547083334887}{737838771027589973130803381526823366829123607289514562862200802985188511651508214051602211336999}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 337544332546 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 168 conjugacy class representatives for t21n124 are not computed |
| Character table for t21n124 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $21$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1850356597 | Data not computed | ||||||