Normalized defining polynomial
\( x^{21} - 9 x^{20} + 37 x^{19} - 84 x^{18} + 105 x^{17} - 62 x^{16} + 92 x^{15} - 450 x^{14} + 800 x^{13} + 216 x^{12} - 1254 x^{11} - 2043 x^{10} + 6711 x^{9} - 3102 x^{8} - 7 x^{7} - 2603 x^{6} + 6489 x^{5} - 6487 x^{4} + 3977 x^{3} - 1257 x^{2} + 160 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21487929345620722812146586898401=3^{20}\cdot 151^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12007841000087460022761658082441911602117} a^{20} + \frac{498814512112742766678444030487659181228}{12007841000087460022761658082441911602117} a^{19} - \frac{1446137158723055545882268636927769630972}{4002613666695820007587219360813970534039} a^{18} + \frac{444730960785421893493812670026516586377}{4002613666695820007587219360813970534039} a^{17} - \frac{748873764482802817747078039303819196633}{4002613666695820007587219360813970534039} a^{16} - \frac{1795654971172763787488790895542929892560}{12007841000087460022761658082441911602117} a^{15} - \frac{232182955704485732814885080675070859579}{4002613666695820007587219360813970534039} a^{14} - \frac{5957717591233119413003328807662998464302}{12007841000087460022761658082441911602117} a^{13} + \frac{4225131669898445719154023832182282700255}{12007841000087460022761658082441911602117} a^{12} - \frac{4056675553624707741685316677989846993854}{12007841000087460022761658082441911602117} a^{11} - \frac{122665429980676930678936314044665549532}{12007841000087460022761658082441911602117} a^{10} - \frac{3416997934495698873568672489281439314346}{12007841000087460022761658082441911602117} a^{9} - \frac{1373836280913957288759278726654327587336}{12007841000087460022761658082441911602117} a^{8} + \frac{841590152247125173284760737102199012087}{12007841000087460022761658082441911602117} a^{7} + \frac{885032672566796319422606521726825820266}{4002613666695820007587219360813970534039} a^{6} - \frac{1753783797321265685685950700717204657142}{12007841000087460022761658082441911602117} a^{5} + \frac{4382401209530335672075337646156236004472}{12007841000087460022761658082441911602117} a^{4} - \frac{369997860462741864612602128718237167556}{4002613666695820007587219360813970534039} a^{3} - \frac{71681273382459874844254762628788524543}{307893358976601539045170720062613118003} a^{2} - \frac{5600325902485631119233050052526732765720}{12007841000087460022761658082441911602117} a - \frac{3516609980630563478820976897468154994590}{12007841000087460022761658082441911602117}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6183408.34933 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10206 |
| The 96 conjugacy class representatives for t21n51 are not computed |
| Character table for t21n51 is not computed |
Intermediate fields
| 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.7 | $x^{6} + 6 x^{5} + 6 x^{3} + 72$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2]^{6}$ | |
| 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |