Normalized defining polynomial
\( x^{21} - 7 x^{20} - 49 x^{19} + 539 x^{18} + 161 x^{17} - 16051 x^{16} + 38241 x^{15} + \cdots + 1393873588 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[1, 10]$ |
| |
| Discriminant: |
\(20714269215444879542778783404872527378677760000000000000000000\)
\(\medspace = 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 41^{7}\)
|
| |
| Root discriminant: | \(831.42\) |
| |
| Galois root discriminant: | $2^{27/14}3^{13/14}5^{13/14}7^{47/42}41^{1/2}\approx 2659.129372520378$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{8610}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}+\frac{2}{5}a^{7}+\frac{2}{5}a^{6}+\frac{1}{5}a^{4}-\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{9}-\frac{2}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{5}+\frac{2}{5}$, $\frac{1}{5}a^{11}-\frac{2}{5}a^{6}+\frac{2}{5}a$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{7}+\frac{2}{5}a^{2}$, $\frac{1}{5}a^{13}-\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{150}a^{14}-\frac{3}{50}a^{13}-\frac{7}{150}a^{12}-\frac{1}{50}a^{11}+\frac{3}{50}a^{10}+\frac{1}{50}a^{9}+\frac{13}{150}a^{8}-\frac{17}{50}a^{7}-\frac{32}{75}a^{6}+\frac{12}{25}a^{5}+\frac{2}{25}a^{4}-\frac{3}{25}a^{3}-\frac{37}{75}a^{2}-\frac{6}{25}a+\frac{34}{75}$, $\frac{1}{150}a^{15}+\frac{1}{75}a^{13}-\frac{1}{25}a^{12}+\frac{2}{25}a^{11}-\frac{1}{25}a^{10}+\frac{1}{15}a^{9}+\frac{1}{25}a^{8}-\frac{43}{150}a^{7}-\frac{9}{25}a^{6}+\frac{2}{5}a^{5}-\frac{1}{5}a^{4}+\frac{2}{75}a^{3}-\frac{12}{25}a^{2}-\frac{23}{75}a+\frac{2}{25}$, $\frac{1}{150}a^{16}+\frac{2}{25}a^{13}-\frac{2}{75}a^{12}-\frac{4}{75}a^{10}-\frac{3}{50}a^{8}-\frac{12}{25}a^{7}+\frac{4}{75}a^{6}-\frac{4}{25}a^{5}+\frac{4}{15}a^{4}-\frac{6}{25}a^{3}+\frac{12}{25}a^{2}-\frac{1}{25}a+\frac{37}{75}$, $\frac{1}{750}a^{17}-\frac{1}{750}a^{16}-\frac{1}{750}a^{15}+\frac{2}{25}a^{13}+\frac{32}{375}a^{12}+\frac{8}{375}a^{11}-\frac{2}{375}a^{10}-\frac{11}{150}a^{9}+\frac{3}{50}a^{8}+\frac{11}{50}a^{7}+\frac{31}{75}a^{6}-\frac{29}{75}a^{5}+\frac{2}{75}a^{4}-\frac{34}{75}a^{3}-\frac{8}{125}a^{2}+\frac{3}{125}a-\frac{31}{375}$, $\frac{1}{750}a^{18}-\frac{1}{375}a^{16}-\frac{1}{750}a^{15}+\frac{32}{375}a^{13}+\frac{1}{15}a^{12}+\frac{7}{125}a^{11}+\frac{1}{750}a^{10}-\frac{4}{75}a^{9}+\frac{1}{25}a^{8}-\frac{13}{150}a^{7}+\frac{11}{75}a^{6}+\frac{12}{25}a^{5}+\frac{31}{75}a^{4}-\frac{29}{375}a^{3}+\frac{7}{25}a^{2}+\frac{158}{375}a-\frac{46}{375}$, $\frac{1}{949500}a^{19}-\frac{49}{189900}a^{18}-\frac{121}{316500}a^{17}+\frac{191}{189900}a^{16}-\frac{2729}{949500}a^{15}+\frac{283}{316500}a^{14}+\frac{6577}{189900}a^{13}-\frac{64867}{949500}a^{12}-\frac{299}{15825}a^{11}+\frac{34997}{474750}a^{10}-\frac{103}{47475}a^{9}-\frac{3127}{31650}a^{8}+\frac{12919}{47475}a^{7}+\frac{21299}{94950}a^{6}-\frac{25}{1266}a^{5}+\frac{66523}{237375}a^{4}-\frac{8602}{47475}a^{3}+\frac{7144}{26375}a^{2}-\frac{21442}{47475}a-\frac{31712}{237375}$, $\frac{1}{55\cdots 00}a^{20}+\frac{79\cdots 03}{55\cdots 00}a^{19}-\frac{21\cdots 83}{61\cdots 00}a^{18}+\frac{42\cdots 49}{55\cdots 00}a^{17}-\frac{17\cdots 69}{55\cdots 00}a^{16}+\frac{51\cdots 31}{18\cdots 00}a^{15}-\frac{11\cdots 33}{55\cdots 00}a^{14}+\frac{13\cdots 27}{55\cdots 00}a^{13}+\frac{71\cdots 41}{92\cdots 50}a^{12}-\frac{76\cdots 69}{13\cdots 75}a^{11}-\frac{13\cdots 87}{27\cdots 50}a^{10}-\frac{45\cdots 97}{61\cdots 50}a^{9}+\frac{77\cdots 69}{11\cdots 30}a^{8}-\frac{56\cdots 52}{27\cdots 75}a^{7}-\frac{88\cdots 07}{18\cdots 50}a^{6}-\frac{60\cdots 67}{13\cdots 75}a^{5}-\frac{60\cdots 86}{13\cdots 75}a^{4}-\frac{57\cdots 77}{46\cdots 25}a^{3}-\frac{69\cdots 03}{13\cdots 75}a^{2}+\frac{59\cdots 93}{13\cdots 75}a+\frac{20\cdots 29}{46\cdots 25}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot R \cdot h}{2\cdot\sqrt{20714269215444879542778783404872527378677760000000000000000000}}\cr\mathstrut & \text{
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ |
Intermediate fields
| 3.1.4920.1, 7.1.600362847000000.35 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.2.0.1}{2} }^{10}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }^{7}$ | ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.7.0.1}{7} }$ | ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.3.0.1}{3} }^{7}$ | R | $21$ | ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{7}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ |
| 2.1.14.27a1.17 | $x^{14} + 4 x^{7} + 2$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $$[3]_{7}^{3}$$ | |
|
\(3\)
| 3.1.7.6a1.1 | $x^{7} + 3$ | $7$ | $1$ | $6$ | $F_7$ | $$[\ ]_{7}^{6}$$ |
| 3.1.14.13a1.2 | $x^{14} + 6$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ | |
|
\(5\)
| 5.1.7.6a1.1 | $x^{7} + 5$ | $7$ | $1$ | $6$ | $F_7$ | $$[\ ]_{7}^{6}$$ |
| 5.1.14.13a1.1 | $x^{14} + 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ | |
|
\(7\)
| 7.3.7.21a6.1 | $x^{21} + 42 x^{20} + 756 x^{19} + 7588 x^{18} + 46368 x^{17} + 178416 x^{16} + 447888 x^{15} + 834336 x^{14} + 1427328 x^{13} + 2034368 x^{12} + 2231040 x^{11} + 3096576 x^{10} + 1944320 x^{9} + 3064320 x^{8} + 967680 x^{7} + 1956864 x^{6} + 258048 x^{5} + 774144 x^{4} + 28679 x^{3} + 172074 x^{2} + 16419$ | $7$ | $3$ | $21$ | 21T9 | not computed |
|
\(41\)
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.1.2.1a1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 41.2.2.2a1.2 | $x^{4} + 76 x^{3} + 1456 x^{2} + 456 x + 77$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |