Normalized defining polynomial
\( x^{21} - 14 x^{19} - 112 x^{18} - 336 x^{17} + 4564 x^{16} + 1708 x^{15} + 24636 x^{14} - 16562 x^{13} - 6692 x^{12} - 289520 x^{11} + 264516 x^{10} + 115752 x^{9} + 1883644 x^{8} - 889788 x^{7} - 3541916 x^{6} - 12439007 x^{5} + 416388 x^{4} + 19645038 x^{3} + 30658572 x^{2} + 19299672 x + 7270992 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(192147086900203831762438314816776785618796544=2^{33}\cdot 3^{10}\cdot 7^{35}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{11} + \frac{1}{24} a^{9} + \frac{1}{6} a^{8} - \frac{1}{12} a^{6} - \frac{3}{16} a^{5} + \frac{1}{12} a^{4} - \frac{23}{48} a^{3} - \frac{5}{12} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{12} + \frac{1}{24} a^{10} - \frac{1}{12} a^{9} + \frac{1}{6} a^{7} - \frac{3}{16} a^{6} + \frac{1}{3} a^{5} - \frac{23}{48} a^{4} - \frac{1}{6} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{48} a^{15} + \frac{1}{48} a^{11} + \frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{24} a^{8} + \frac{3}{16} a^{7} + \frac{1}{8} a^{6} + \frac{11}{24} a^{5} - \frac{11}{24} a^{4} + \frac{1}{48} a^{3} - \frac{5}{12} a^{2} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{96} a^{16} - \frac{5}{96} a^{12} - \frac{1}{24} a^{11} + \frac{1}{48} a^{10} + \frac{1}{24} a^{9} - \frac{7}{32} a^{8} + \frac{1}{24} a^{6} - \frac{1}{6} a^{5} + \frac{1}{96} a^{4} + \frac{1}{24} a^{3} - \frac{5}{16} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{576} a^{17} - \frac{1}{192} a^{16} - \frac{1}{288} a^{15} + \frac{1}{192} a^{13} - \frac{25}{576} a^{12} - \frac{5}{144} a^{11} + \frac{1}{96} a^{10} + \frac{17}{192} a^{9} + \frac{119}{576} a^{8} - \frac{49}{288} a^{7} + \frac{7}{48} a^{6} - \frac{223}{576} a^{5} + \frac{101}{576} a^{4} + \frac{1}{4} a^{3} + \frac{13}{96} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{1152} a^{18} + \frac{1}{1152} a^{16} - \frac{1}{192} a^{15} - \frac{1}{128} a^{14} - \frac{1}{288} a^{13} - \frac{71}{1152} a^{12} - \frac{7}{192} a^{11} + \frac{23}{384} a^{10} - \frac{5}{144} a^{9} - \frac{41}{1152} a^{8} - \frac{1}{64} a^{7} + \frac{281}{1152} a^{6} + \frac{95}{288} a^{5} - \frac{33}{128} a^{4} + \frac{1}{64} a^{3} + \frac{71}{192} a^{2} + \frac{1}{4} a + \frac{3}{16}$, $\frac{1}{6912} a^{19} - \frac{1}{6912} a^{18} + \frac{1}{6912} a^{17} - \frac{7}{6912} a^{16} - \frac{1}{2304} a^{15} + \frac{53}{6912} a^{14} - \frac{19}{6912} a^{13} - \frac{163}{6912} a^{12} - \frac{41}{768} a^{11} + \frac{275}{6912} a^{10} - \frac{385}{6912} a^{9} - \frac{745}{6912} a^{8} - \frac{1621}{6912} a^{7} + \frac{17}{2304} a^{6} - \frac{1493}{6912} a^{5} + \frac{425}{2304} a^{4} - \frac{41}{96} a^{3} - \frac{29}{384} a^{2} + \frac{31}{96} a - \frac{1}{32}$, $\frac{1}{25044139828719565171554005984576384989024342604571343232083821312} a^{20} + \frac{33393697148915661885608717372479025599241218132989374833307}{927560734397020932279777999428754999593494170539679378966067456} a^{19} + \frac{1468274660247167954224637455743251887538116537729894192584949}{8348046609573188390518001994858794996341447534857114410694607104} a^{18} + \frac{371913290561513944205058200830088226912409134473327219997281}{927560734397020932279777999428754999593494170539679378966067456} a^{17} - \frac{63028364139640320936965610864805880168096049675525427854758641}{25044139828719565171554005984576384989024342604571343232083821312} a^{16} - \frac{84367725222073704803215234158291992505895841664885336145606729}{25044139828719565171554005984576384989024342604571343232083821312} a^{15} - \frac{191166300450394103435410823464657005968402519197755674740965977}{25044139828719565171554005984576384989024342604571343232083821312} a^{14} - \frac{120135531857027401730026054733470720856558315350925434394992457}{25044139828719565171554005984576384989024342604571343232083821312} a^{13} + \frac{63039993144795387367559706293564540115740541838365246881313209}{25044139828719565171554005984576384989024342604571343232083821312} a^{12} + \frac{582690982743860519460876424860810613560027801677519061228853385}{25044139828719565171554005984576384989024342604571343232083821312} a^{11} - \frac{1267627164152120345883959750252551121818968969790067027708625179}{25044139828719565171554005984576384989024342604571343232083821312} a^{10} - \frac{3128644935765170644802194534463482312106111826266147054076114539}{25044139828719565171554005984576384989024342604571343232083821312} a^{9} + \frac{1810299584205510216462163396217118717801258364124238639132163321}{25044139828719565171554005984576384989024342604571343232083821312} a^{8} - \frac{4864229755315843315211271284591871610647271268543071345377838879}{25044139828719565171554005984576384989024342604571343232083821312} a^{7} + \frac{5608563525850349099442193264942445659743063389271335412752341825}{25044139828719565171554005984576384989024342604571343232083821312} a^{6} - \frac{2680015045579540645448565585107127934535368015995886971836352527}{25044139828719565171554005984576384989024342604571343232083821312} a^{5} + \frac{129490606162187036334589147246766219559884973234305905285385197}{463780367198510466139888999714377499796747085269839689483033728} a^{4} - \frac{439007148740470572613643043920735465130690419135285611581841613}{1391341101595531398419666999143132499390241255809519068449101184} a^{3} - \frac{214353770009872433390270134707940967331781290941227635620203399}{695670550797765699209833499571566249695120627904759534224550592} a^{2} + \frac{74872740470658392282040025391429389055724630084857419639695223}{347835275398882849604916749785783124847560313952379767112275296} a - \frac{24938853290962944226473301588907106954635320865374653989746613}{57972545899813808267486124964297187474593385658729961185379216}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27379099210300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for t21n23 |
| Character table for t21n23 |
Intermediate fields
| 3.1.1176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7 | Data not computed | ||||||