Normalized defining polynomial
\( x^{21} - 6 x^{20} - 168 x^{19} + 611 x^{18} + 13832 x^{17} - 13344 x^{16} - 666664 x^{15} - 989086 x^{14} + 17972163 x^{13} + 71204814 x^{12} - 189813196 x^{11} - 1803958691 x^{10} - 2330392804 x^{9} + 16240781900 x^{8} + 74385298756 x^{7} + 79477395250 x^{6} - 324329443355 x^{5} - 1518887507682 x^{4} - 3105664311860 x^{3} - 3688449195213 x^{2} - 2484245295486 x - 741506873256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1902948940800820607084462980900099005385574191104=2^{12}\cdot 3^{4}\cdot 7^{2}\cdot 11^{10}\cdot 13^{12}\cdot 440118379^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $199.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13, 440118379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{52} a^{12} + \frac{3}{26} a^{11} + \frac{5}{52} a^{10} + \frac{1}{13} a^{9} + \frac{9}{52} a^{8} + \frac{1}{13} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{3}{52} a^{4} - \frac{1}{52} a^{2} + \frac{3}{13} a - \frac{1}{13}$, $\frac{1}{52} a^{13} - \frac{5}{52} a^{11} + \frac{11}{52} a^{9} + \frac{1}{26} a^{8} - \frac{11}{52} a^{7} - \frac{23}{52} a^{5} + \frac{2}{13} a^{4} + \frac{25}{52} a^{3} + \frac{9}{26} a^{2} + \frac{1}{26} a + \frac{6}{13}$, $\frac{1}{52} a^{14} + \frac{1}{13} a^{11} + \frac{5}{26} a^{10} - \frac{1}{13} a^{9} + \frac{2}{13} a^{8} - \frac{3}{26} a^{7} - \frac{5}{26} a^{6} - \frac{9}{26} a^{5} - \frac{3}{13} a^{4} + \frac{9}{26} a^{3} - \frac{3}{52} a^{2} - \frac{5}{13} a - \frac{5}{13}$, $\frac{1}{104} a^{15} - \frac{1}{104} a^{14} - \frac{1}{104} a^{13} - \frac{1}{104} a^{12} - \frac{3}{52} a^{11} - \frac{1}{4} a^{10} - \frac{19}{104} a^{9} - \frac{9}{104} a^{8} - \frac{1}{4} a^{7} + \frac{9}{52} a^{6} - \frac{23}{104} a^{5} - \frac{45}{104} a^{4} + \frac{45}{104} a^{3} + \frac{35}{104} a^{2} - \frac{5}{52} a + \frac{2}{13}$, $\frac{1}{104} a^{16} - \frac{1}{104} a^{12} + \frac{1}{52} a^{11} + \frac{5}{104} a^{10} + \frac{5}{52} a^{9} - \frac{1}{8} a^{8} - \frac{9}{52} a^{7} + \frac{1}{104} a^{6} + \frac{3}{52} a^{5} + \frac{5}{52} a^{4} - \frac{21}{52} a^{3} - \frac{3}{104} a^{2} + \frac{21}{52} a$, $\frac{1}{208} a^{17} - \frac{1}{208} a^{15} + \frac{1}{208} a^{14} - \frac{1}{208} a^{12} + \frac{1}{16} a^{11} + \frac{21}{104} a^{10} - \frac{5}{104} a^{9} + \frac{7}{208} a^{8} + \frac{37}{208} a^{7} - \frac{19}{104} a^{6} - \frac{19}{208} a^{5} - \frac{9}{208} a^{4} + \frac{15}{104} a^{3} - \frac{15}{208} a^{2} + \frac{7}{104} a - \frac{1}{2}$, $\frac{1}{208} a^{18} - \frac{1}{208} a^{16} - \frac{1}{208} a^{15} - \frac{1}{104} a^{14} + \frac{1}{208} a^{13} - \frac{1}{208} a^{12} - \frac{3}{104} a^{11} - \frac{1}{8} a^{10} - \frac{3}{208} a^{9} - \frac{17}{208} a^{8} + \frac{1}{8} a^{7} + \frac{37}{208} a^{6} + \frac{5}{208} a^{5} - \frac{11}{26} a^{4} - \frac{21}{208} a^{3} - \frac{5}{13} a^{2} - \frac{23}{52} a - \frac{6}{13}$, $\frac{1}{1248} a^{19} - \frac{1}{416} a^{18} - \frac{1}{312} a^{16} - \frac{1}{312} a^{15} - \frac{1}{104} a^{14} - \frac{1}{312} a^{13} + \frac{1}{624} a^{12} - \frac{45}{416} a^{11} + \frac{29}{416} a^{10} + \frac{121}{624} a^{9} - \frac{19}{624} a^{8} + \frac{7}{39} a^{7} - \frac{95}{624} a^{6} + \frac{125}{624} a^{5} + \frac{23}{48} a^{4} + \frac{229}{1248} a^{3} - \frac{151}{416} a^{2} + \frac{203}{624} a - \frac{1}{4}$, $\frac{1}{15474094473343124969172434306090273138259916656079469613360856032} a^{20} - \frac{172559764852021595229121639440986611202352573271230273763727}{5158031491114374989724144768696757712753305552026489871120285344} a^{19} + \frac{251462181429233709123233430209757935172783763384767288555974}{161188484097324218428879524021773678523540798500827808472508917} a^{18} - \frac{1102107010495081115067398888005973854589625478226548238859632}{483565452291972655286638572065321035570622395502483425417526751} a^{17} - \frac{35891383447964404313053016719112636342280869828728914988528643}{7737047236671562484586217153045136569129958328039734806680428016} a^{16} + \frac{8767183516055857801037056839696523219380423529902162538815359}{2579015745557187494862072384348378856376652776013244935560142672} a^{15} + \frac{7686371309149274002932318684834419948530647776246929841046437}{967130904583945310573277144130642071141244791004966850835053502} a^{14} + \frac{4293666989344052444447314437565971401056113207196453229693551}{483565452291972655286638572065321035570622395502483425417526751} a^{13} + \frac{228149047374889454745828788612477220545542204298528388111383}{132257217720881409992926788940942505455212962872474099259494496} a^{12} - \frac{2171348969368985624808501417438478750772042865388699125265363}{1719343830371458329908048256232252570917768517342163290373428448} a^{11} - \frac{77166516773415071364185569872169379652947595454774981620658027}{967130904583945310573277144130642071141244791004966850835053502} a^{10} + \frac{133455945146220180546362347276954220078098090485299174890151953}{3868523618335781242293108576522568284564979164019867403340214008} a^{9} - \frac{1221935186818596442922706535939429037762161563648272341186795115}{7737047236671562484586217153045136569129958328039734806680428016} a^{8} + \frac{621056386180540438745755747660181137883961448432239471709302397}{7737047236671562484586217153045136569129958328039734806680428016} a^{7} + \frac{284997792113367065011413709675049762631983461942594314612314783}{1934261809167890621146554288261284142282489582009933701670107004} a^{6} + \frac{1425414117117088813485785081780059311070626068275018413824395891}{3868523618335781242293108576522568284564979164019867403340214008} a^{5} + \frac{5398819747184720513815681062693092931122532685262199811015698193}{15474094473343124969172434306090273138259916656079469613360856032} a^{4} + \frac{1916160490650590942725471363345307962410405506400109846363364753}{5158031491114374989724144768696757712753305552026489871120285344} a^{3} - \frac{107719549618312242094792403206027036954531454315020433154824803}{483565452291972655286638572065321035570622395502483425417526751} a^{2} - \frac{101403270425281915139765040246247763339137501909233093785218115}{429835957592864582477012064058063142729442129335540822593357112} a + \frac{37809079340678268107053028981820600276854411737721374166366379}{107458989398216145619253016014515785682360532333885205648339278}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52949058800500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 96 conjugacy class representatives for t21n134 are not computed |
| Character table for t21n134 is not computed |
Intermediate fields
| 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.19 | $x^{12} - 6 x^{10} + 27 x^{8} - 4 x^{6} + 7 x^{4} + 10 x^{2} + 29$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2]^{12}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.9.0.1 | $x^{9} - x^{3} + x^{2} + 1$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 440118379 | Data not computed | ||||||