Normalized defining polynomial
\( x^{21} - 7 x^{20} + 56 x^{19} - 161 x^{18} + 581 x^{17} + 434 x^{16} - 1099 x^{15} + 19159 x^{14} + 8281 x^{13} + 87794 x^{12} + 966385 x^{11} - 2665229 x^{10} + 2983120 x^{9} - 37440235 x^{8} + 138040805 x^{7} - 189202188 x^{6} + 722578416 x^{5} - 1035586608 x^{4} + 1556164848 x^{3} - 2269756608 x^{2} + 1964250960 x - 685324272 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1842305049185776426372317709444210377390880236285000000000000000000=2^{18}\cdot 3^{18}\cdot 5^{19}\cdot 7^{21}\cdot 13^{7}\cdot 83^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1430.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 13, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{14} + \frac{1}{20} a^{13} - \frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{1}{20} a^{10} + \frac{3}{20} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{1}{20} a^{6} + \frac{7}{20} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{20} a^{15} + \frac{1}{10} a^{13} - \frac{1}{20} a^{12} - \frac{3}{20} a^{11} + \frac{1}{5} a^{10} + \frac{1}{20} a^{8} - \frac{3}{20} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{3}{10} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{20} a^{16} + \frac{1}{10} a^{13} + \frac{1}{20} a^{12} + \frac{1}{10} a^{10} + \frac{1}{20} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{10} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{17} - \frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{4} a^{9} - \frac{3}{20} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{4} a^{4} + \frac{2}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{40} a^{18} - \frac{1}{40} a^{16} - \frac{1}{20} a^{13} - \frac{1}{8} a^{12} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{4} a^{9} + \frac{7}{40} a^{8} - \frac{1}{40} a^{6} - \frac{7}{20} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{200} a^{19} + \frac{1}{200} a^{18} + \frac{3}{200} a^{17} - \frac{3}{200} a^{16} + \frac{1}{50} a^{15} + \frac{1}{50} a^{14} - \frac{11}{200} a^{13} + \frac{17}{200} a^{12} + \frac{1}{25} a^{11} + \frac{9}{50} a^{10} - \frac{3}{40} a^{9} - \frac{7}{40} a^{8} - \frac{1}{8} a^{7} - \frac{1}{40} a^{6} + \frac{1}{4} a^{5} - \frac{17}{50} a^{4} - \frac{6}{25} a^{3} + \frac{9}{50} a^{2} - \frac{2}{25} a - \frac{4}{25}$, $\frac{1}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{20} + \frac{1008035084957156262081065431373526113486705628825367734228044550178701352011}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{19} - \frac{611750455792022748107348569643753625137934573536014019694523984722224880359}{175901807119781252112972865079397935593282447225109960414876288597694475825075} a^{18} + \frac{32919681473273060635070971527927466165204023300181617374277060046460137888017}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{17} + \frac{18051861832760306060259589008956074389512133006498303935741895983441923763139}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{16} + \frac{10745153571434604681223829856064023165762272999738593997220649332251594761897}{703607228479125008451891460317591742373129788900439841659505154390777903300300} a^{15} - \frac{25105376014650773190681849181797255124694203451922890844128553898426677500001}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{14} - \frac{33493110957039947365214012402169547646437043392841457026383140611989304388783}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{13} + \frac{147160195677856656625707229628650411497901685845708498357980900875159081968053}{1407214456958250016903782920635183484746259577800879683319010308781555806600600} a^{12} - \frac{74521242988761828249135632497930418329331224269212201682605060152179221966457}{703607228479125008451891460317591742373129788900439841659505154390777903300300} a^{11} + \frac{69651840082643382204534620559064139426240575761952642426232351808218367079919}{281442891391650003380756584127036696949251915560175936663802061756311161320120} a^{10} - \frac{4460521356395635997668156551118732250862570994595132852326162217135961687207}{56288578278330000676151316825407339389850383112035187332760412351262232264024} a^{9} - \frac{1192461572283822028030925832692525696056924755227376347688589730410235535741}{7036072284791250084518914603175917423731297889004398416595051543907779033003} a^{8} + \frac{13319211945735146666409752663417254031190781866944045569275434417370481911863}{281442891391650003380756584127036696949251915560175936663802061756311161320120} a^{7} + \frac{29670284320884570165390309274243494852554363206907417090751055235143200181351}{281442891391650003380756584127036696949251915560175936663802061756311161320120} a^{6} + \frac{79290884399481371401333661454464562912955201204447629278691025564560385283729}{175901807119781252112972865079397935593282447225109960414876288597694475825075} a^{5} + \frac{10577302275650723216771177863305006953842237984422534478510226347620789427381}{703607228479125008451891460317591742373129788900439841659505154390777903300300} a^{4} + \frac{161140702063296494962634727907131087121961685567374185533635519239668893724159}{351803614239562504225945730158795871186564894450219920829752577195388951650150} a^{3} + \frac{60443377524819211596771548666460286342242097117942066599126429060999703082913}{175901807119781252112972865079397935593282447225109960414876288597694475825075} a^{2} - \frac{5606983958003137478905843962733789443221794477860069135548480813999500512749}{175901807119781252112972865079397935593282447225109960414876288597694475825075} a - \frac{16090317699779068782968408036971616698361981689171263568468023049531692066998}{35180361423956250422594573015879587118656489445021992082975257719538895165015}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.5395.1, 7.1.600362847000000.31 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| $5$ | 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 5.14.13.1 | $x^{14} - 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |