Normalized defining polynomial
\( x^{21} - 35 x^{19} + 938 x^{17} - 12775 x^{15} - 1362 x^{14} + 130732 x^{13} + 67760 x^{12} - 706384 x^{11} - 340816 x^{10} + 2496256 x^{9} - 806008 x^{8} - 4299024 x^{7} + 5752992 x^{6} + 903168 x^{5} - 7451136 x^{4} + 3649408 x^{3} + 1128960 x^{2} + 1013824 x - 1588864 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18160965159013032471314665291504568505018028036096=2^{12}\cdot 7^{30}\cdot 107^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $221.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6}$, $\frac{1}{40} a^{11} + \frac{1}{20} a^{10} + \frac{3}{40} a^{9} - \frac{1}{40} a^{8} + \frac{9}{40} a^{7} - \frac{1}{10} a^{6} + \frac{9}{20} a^{5} - \frac{2}{5} a^{4} - \frac{3}{10} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} + \frac{3}{40} a^{9} + \frac{1}{40} a^{8} - \frac{1}{20} a^{7} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{80} a^{13} - \frac{1}{80} a^{12} + \frac{1}{80} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} + \frac{1}{40} a^{7} - \frac{3}{20} a^{6} + \frac{1}{4} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{80} a^{14} - \frac{1}{80} a^{12} - \frac{1}{80} a^{11} + \frac{3}{80} a^{10} - \frac{1}{20} a^{9} - \frac{9}{40} a^{7} + \frac{1}{5} a^{6} + \frac{3}{20} a^{5} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{80} a^{15} - \frac{1}{80} a^{11} - \frac{3}{80} a^{10} + \frac{1}{20} a^{8} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{20} a^{5} + \frac{1}{5} a^{4} + \frac{3}{10} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{80} a^{16} - \frac{1}{80} a^{12} - \frac{1}{80} a^{11} + \frac{1}{20} a^{10} - \frac{1}{8} a^{9} + \frac{3}{40} a^{8} + \frac{3}{40} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{10} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{80} a^{17} + \frac{1}{80} a^{10} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{8} a^{7} + \frac{1}{10} a^{6} - \frac{3}{10} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{160} a^{18} - \frac{1}{160} a^{16} + \frac{1}{160} a^{12} - \frac{1}{80} a^{11} - \frac{3}{80} a^{10} + \frac{1}{10} a^{9} - \frac{3}{40} a^{8} - \frac{1}{40} a^{7} - \frac{1}{10} a^{6} - \frac{3}{20} a^{5} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{160} a^{19} - \frac{1}{160} a^{17} - \frac{1}{160} a^{13} - \frac{1}{80} a^{11} + \frac{1}{80} a^{10} - \frac{3}{40} a^{9} - \frac{1}{40} a^{7} - \frac{1}{10} a^{6} - \frac{1}{20} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{48032808298985941941341348224109589457680906666977600} a^{20} + \frac{69946623931735423422955260511325182251124178885759}{24016404149492970970670674112054794728840453333488800} a^{19} + \frac{92958604798231176915623701433436695373637597678889}{48032808298985941941341348224109589457680906666977600} a^{18} - \frac{26318061524660071658701341714871112616491118537119}{24016404149492970970670674112054794728840453333488800} a^{17} + \frac{148160691522478036462131694163751394762765205597037}{24016404149492970970670674112054794728840453333488800} a^{16} + \frac{35272597675127300008382224385482294322071590312239}{6004101037373242742667668528013698682210113333372200} a^{15} + \frac{147079060539188838684147487991204204973538172403101}{48032808298985941941341348224109589457680906666977600} a^{14} - \frac{2656994397631887307789364190955486940669796458489}{3002050518686621371333834264006849341105056666686100} a^{13} + \frac{1434754006964557548750853933326577561821890680723}{300205051868662137133383426400684934110505666668610} a^{12} + \frac{18435151850679335006603950654472903761482684436367}{2401640414949297097067067411205479472884045333348880} a^{11} - \frac{73644187231225122156514110204458235195469607662883}{6004101037373242742667668528013698682210113333372200} a^{10} + \frac{589665635047275878567620794715996331446280670492509}{6004101037373242742667668528013698682210113333372200} a^{9} - \frac{510451303480579850294533539372541414707365061017161}{6004101037373242742667668528013698682210113333372200} a^{8} + \frac{164381968892997701433164605130107526995766543262643}{3002050518686621371333834264006849341105056666686100} a^{7} - \frac{37118776654238247979654286610937393164539048095292}{150102525934331068566691713200342467055252833334305} a^{6} - \frac{297655456085246944742323770680494297633262057731713}{3002050518686621371333834264006849341105056666686100} a^{5} + \frac{346701674043616706423858161905217296856049910908351}{750512629671655342833458566001712335276264166671525} a^{4} + \frac{80250212542287204889186401928224436149888164489853}{1501025259343310685666917132003424670552528333343050} a^{3} - \frac{22979617264619637611483306408976623077256032612586}{750512629671655342833458566001712335276264166671525} a^{2} - \frac{281537869690512461631391217048872426583798416051943}{750512629671655342833458566001712335276264166671525} a + \frac{253211913603340864411843077301489574706403881373827}{750512629671655342833458566001712335276264166671525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30683343662500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 20 conjugacy class representatives for t21n25 |
| Character table for t21n25 |
Intermediate fields
| 3.1.107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | $21$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $107$ | $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |