Normalized defining polynomial
\( x^{21} - 14 x^{18} + 42 x^{17} - 140 x^{16} + 175 x^{15} + 425 x^{14} + 1519 x^{13} - 9898 x^{12} + 16282 x^{11} - 33026 x^{10} + 81480 x^{9} - 97958 x^{8} + 117456 x^{7} - 350889 x^{6} + 665518 x^{5} - 809228 x^{4} + 1059947 x^{3} - 1333689 x^{2} + 988967 x - 299363 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142285435635122529826917437172786251489=7^{21}\cdot 23^{7}\cdot 523^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23, 523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5} a^{19} - \frac{1}{5} a^{18} + \frac{2}{5} a^{17} - \frac{2}{5} a^{16} + \frac{1}{5} a^{15} + \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{11375348073267819255092972369083170238321670002449242225} a^{20} - \frac{948014990394881502087687864060254139488610735965776358}{11375348073267819255092972369083170238321670002449242225} a^{19} - \frac{5148737752702002311116666733234645636136880326569151861}{11375348073267819255092972369083170238321670002449242225} a^{18} - \frac{3764665479605415410324220316446844472839806446391656776}{11375348073267819255092972369083170238321670002449242225} a^{17} - \frac{10829386079359866417876988278225592867634621692510999}{23948101206879619484406257619122463659624568426208931} a^{16} + \frac{284221885345476468001794131026433745231533026990715462}{2275069614653563851018594473816634047664334000489848445} a^{15} - \frac{219047856444240155990327255363726250934267717891555046}{2275069614653563851018594473816634047664334000489848445} a^{14} + \frac{1116657856084725504043549041633870569055767641655051393}{2275069614653563851018594473816634047664334000489848445} a^{13} - \frac{827673056886827866736378615122706607808555706224672226}{11375348073267819255092972369083170238321670002449242225} a^{12} + \frac{10211849824767320799057010267543698053809785182856737}{2275069614653563851018594473816634047664334000489848445} a^{11} + \frac{4584399953918845421880884214759797304792865357468611852}{11375348073267819255092972369083170238321670002449242225} a^{10} + \frac{2180665230667381654985979632718387718579217101827945658}{11375348073267819255092972369083170238321670002449242225} a^{9} - \frac{359963898163223290617460010694970646711513064127531534}{11375348073267819255092972369083170238321670002449242225} a^{8} + \frac{3351490405567086004142417785043722551845301314575326014}{11375348073267819255092972369083170238321670002449242225} a^{7} - \frac{4722609152943179579350578964709228890260429800901737556}{11375348073267819255092972369083170238321670002449242225} a^{6} - \frac{4943963468905926609924490477316465178245026168644855316}{11375348073267819255092972369083170238321670002449242225} a^{5} + \frac{3767794935341354258827535646545608756468854132882704546}{11375348073267819255092972369083170238321670002449242225} a^{4} - \frac{1980313878114744780137540110636789224551123916499630371}{11375348073267819255092972369083170238321670002449242225} a^{3} - \frac{50321886190991754474492521150697933759855014346457843}{119740506034398097422031288095612318298122842131044655} a^{2} - \frac{958268104566788840836310005938945209785823961254102959}{11375348073267819255092972369083170238321670002449242225} a - \frac{2029978064793408754062450468466062434064457504989132236}{11375348073267819255092972369083170238321670002449242225}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50583274768.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 111132 |
| The 70 conjugacy class representatives for t21n102 are not computed |
| Character table for t21n102 is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 523 | Data not computed | ||||||