Normalized defining polynomial
\( x^{21} - 9 x^{19} - x^{18} + 90 x^{17} + 33 x^{16} - 517 x^{15} + 792 x^{14} + 2043 x^{13} - 5479 x^{12} + 1746 x^{11} + 30675 x^{10} - 29471 x^{9} - 28809 x^{8} + 255240 x^{7} - 240039 x^{6} + 419256 x^{5} + 41958 x^{4} + 4131 x^{3} + 176418 x^{2} - 546750 x + 270459 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140982304436617562370493756640408961=3^{28}\cdot 151^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{10} + \frac{4}{9} a^{9} - \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3}$, $\frac{1}{9} a^{13} + \frac{4}{9} a^{10} + \frac{1}{3} a^{8} - \frac{2}{9} a^{7} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{14} + \frac{4}{27} a^{11} + \frac{1}{3} a^{10} + \frac{1}{9} a^{9} + \frac{7}{27} a^{8} - \frac{1}{3} a^{7} - \frac{2}{9} a^{6} + \frac{1}{27} a^{5} + \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{189} a^{15} - \frac{1}{63} a^{14} - \frac{2}{63} a^{13} + \frac{1}{27} a^{12} - \frac{1}{9} a^{11} + \frac{5}{63} a^{10} + \frac{64}{189} a^{9} + \frac{5}{63} a^{8} + \frac{17}{63} a^{7} + \frac{67}{189} a^{6} + \frac{8}{63} a^{5} + \frac{2}{21} a^{4} + \frac{25}{63} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{189} a^{16} - \frac{1}{189} a^{14} + \frac{10}{189} a^{13} + \frac{8}{189} a^{11} - \frac{59}{189} a^{10} + \frac{20}{63} a^{9} + \frac{68}{189} a^{8} + \frac{52}{189} a^{7} - \frac{16}{63} a^{6} - \frac{22}{189} a^{5} + \frac{29}{63} a^{4} + \frac{13}{63} a^{3} - \frac{8}{21} a^{2} - \frac{2}{7} a$, $\frac{1}{189} a^{17} - \frac{2}{63} a^{13} - \frac{2}{63} a^{12} + \frac{2}{21} a^{11} - \frac{17}{63} a^{10} + \frac{1}{7} a^{9} - \frac{5}{21} a^{8} - \frac{20}{63} a^{7} - \frac{20}{63} a^{6} + \frac{41}{189} a^{5} + \frac{19}{63} a^{4} - \frac{20}{63} a^{3} - \frac{8}{21} a^{2} - \frac{3}{7} a$, $\frac{1}{567} a^{18} - \frac{1}{567} a^{15} - \frac{1}{189} a^{14} - \frac{1}{27} a^{13} - \frac{31}{567} a^{12} - \frac{31}{189} a^{11} + \frac{20}{63} a^{10} - \frac{88}{567} a^{9} - \frac{4}{189} a^{8} - \frac{44}{189} a^{7} + \frac{247}{567} a^{6} - \frac{31}{189} a^{5} + \frac{8}{21} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{7} a$, $\frac{1}{60669} a^{19} + \frac{26}{60669} a^{18} + \frac{5}{6741} a^{17} - \frac{130}{60669} a^{16} - \frac{143}{60669} a^{15} + \frac{152}{20223} a^{14} - \frac{1579}{60669} a^{13} + \frac{412}{8667} a^{12} - \frac{326}{2247} a^{11} - \frac{22357}{60669} a^{10} + \frac{100}{8667} a^{9} + \frac{1423}{20223} a^{8} - \frac{24959}{60669} a^{7} + \frac{5018}{60669} a^{6} - \frac{3085}{6741} a^{5} + \frac{1331}{6741} a^{4} - \frac{2873}{6741} a^{3} - \frac{1097}{2247} a^{2} - \frac{302}{749} a + \frac{35}{107}$, $\frac{1}{98808932051461655065818490554737114724207912393} a^{20} + \frac{29573302435925082157408147217619346968256}{3659590075980061298734018168693967212007700459} a^{19} - \frac{7197326254059267389564990542378605932019413}{32936310683820551688606163518245704908069304131} a^{18} - \frac{196006671136729881741555462399201935885786383}{98808932051461655065818490554737114724207912393} a^{17} + \frac{501181911164259162039495679236077245123115}{477337835997399299834871935047039201566221799} a^{16} + \frac{2527412166429464638376654319302772220869757}{2533562360293888591431243347557361916005331087} a^{15} - \frac{38248182250925558292353497878623357111155531}{98808932051461655065818490554737114724207912393} a^{14} + \frac{93481537541903760733586519818679298435817303}{3659590075980061298734018168693967212007700459} a^{13} - \frac{1275950957420688850097961312737437026742076977}{32936310683820551688606163518245704908069304131} a^{12} - \frac{15273244789548629923141323065913472895594186143}{98808932051461655065818490554737114724207912393} a^{11} + \frac{1397968655196076010574240026445781943797780943}{10978770227940183896202054506081901636023101377} a^{10} + \frac{1025477986676041364766083351988967259230605760}{3659590075980061298734018168693967212007700459} a^{9} + \frac{5990055289481518873189323464228288604521316901}{14115561721637379295116927222105302103458273199} a^{8} - \frac{12646247417563880571575253624467565852972523}{36718295076723023064220918080541477043555523} a^{7} - \frac{13577946434278881803889026828332491547825921259}{32936310683820551688606163518245704908069304131} a^{6} + \frac{1007258599183525178095201143119020369169398805}{10978770227940183896202054506081901636023101377} a^{5} + \frac{480255610955096427030989058213180174465756560}{3659590075980061298734018168693967212007700459} a^{4} - \frac{187337069277691237917916897497549602331589306}{522798582282865899819145452670566744572528637} a^{3} + \frac{28102265579316104204929752525068655826657790}{406621119553340144303779796521551912445300051} a^{2} + \frac{82850896649112170612750133042456533311209047}{406621119553340144303779796521551912445300051} a + \frac{7445109499083331471456406969232234791179369}{58088731364762877757682828074507416063614293}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2150750435.99 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 12 conjugacy class representatives for $D_{21}$ |
| Character table for $D_{21}$ |
Intermediate fields
| 3.1.12231.1, 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |