Normalized defining polynomial
\( x^{21} - 651 x^{18} - 987 x^{17} - 3843 x^{16} + 66507 x^{15} + 100746 x^{14} + 358092 x^{13} - 2906470 x^{12} - 3682455 x^{11} - 10943856 x^{10} + 57108359 x^{9} + 50250816 x^{8} + 108210663 x^{7} - 400053346 x^{6} + 150599988 x^{5} - 78402555 x^{4} - 2282180516 x^{3} - 831989466 x^{2} - 2678600232 x - 3761024003 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13374057441509477190242535150335397353679524137689=3^{28}\cdot 7^{30}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{5}{11} a^{9} + \frac{5}{11} a^{8} + \frac{2}{11} a^{6} - \frac{5}{11} a^{5} + \frac{2}{11} a^{4} - \frac{3}{11} a^{3} - \frac{2}{11} a^{2}$, $\frac{1}{11} a^{11} + \frac{2}{11} a^{9} - \frac{3}{11} a^{8} + \frac{2}{11} a^{7} - \frac{4}{11} a^{6} + \frac{5}{11} a^{5} - \frac{2}{11} a^{4} + \frac{2}{11} a^{3} - \frac{1}{11} a^{2}$, $\frac{1}{11} a^{12} - \frac{2}{11} a^{9} + \frac{3}{11} a^{8} - \frac{4}{11} a^{7} + \frac{1}{11} a^{6} - \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{5}{11} a^{3} + \frac{4}{11} a^{2}$, $\frac{1}{242} a^{13} - \frac{3}{242} a^{12} - \frac{1}{121} a^{11} + \frac{2}{121} a^{10} - \frac{21}{121} a^{9} + \frac{89}{242} a^{8} + \frac{75}{242} a^{7} + \frac{51}{121} a^{6} + \frac{1}{11} a^{5} - \frac{25}{121} a^{4} - \frac{1}{2} a^{3} - \frac{3}{11} a^{2} - \frac{1}{2}$, $\frac{1}{242} a^{14} - \frac{1}{22} a^{12} - \frac{1}{121} a^{11} - \frac{4}{121} a^{10} + \frac{73}{242} a^{9} - \frac{16}{121} a^{8} + \frac{85}{242} a^{7} - \frac{56}{121} a^{6} - \frac{47}{121} a^{5} + \frac{15}{242} a^{4} - \frac{1}{22} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2662} a^{15} - \frac{3}{2662} a^{14} - \frac{1}{1331} a^{13} + \frac{35}{1331} a^{12} + \frac{23}{1331} a^{11} - \frac{65}{2662} a^{10} + \frac{1285}{2662} a^{9} + \frac{601}{1331} a^{8} - \frac{3}{121} a^{7} + \frac{162}{1331} a^{6} - \frac{117}{242} a^{5} - \frac{20}{121} a^{4} + \frac{4}{11} a^{3} + \frac{5}{22} a^{2}$, $\frac{1}{2662} a^{16} - \frac{1}{1331} a^{13} + \frac{91}{2662} a^{12} - \frac{59}{2662} a^{11} + \frac{6}{1331} a^{10} - \frac{161}{1331} a^{9} - \frac{496}{1331} a^{8} - \frac{743}{2662} a^{7} - \frac{1019}{2662} a^{6} - \frac{89}{242} a^{5} - \frac{3}{242} a^{4} + \frac{5}{11} a^{3} - \frac{9}{22} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2662} a^{17} - \frac{1}{1331} a^{14} + \frac{3}{2662} a^{13} - \frac{37}{2662} a^{12} - \frac{27}{1331} a^{11} + \frac{26}{1331} a^{10} + \frac{505}{1331} a^{9} + \frac{379}{2662} a^{8} + \frac{851}{2662} a^{7} + \frac{19}{242} a^{6} - \frac{69}{242} a^{5} + \frac{2}{121} a^{4} + \frac{3}{22} a^{3} - \frac{3}{22} a^{2} - \frac{1}{2} a$, $\frac{1}{29282} a^{18} - \frac{1}{14641} a^{15} - \frac{15}{14641} a^{14} - \frac{59}{29282} a^{13} + \frac{859}{29282} a^{12} + \frac{81}{14641} a^{11} + \frac{109}{14641} a^{10} + \frac{4529}{14641} a^{9} + \frac{12533}{29282} a^{8} + \frac{203}{1331} a^{7} + \frac{415}{2662} a^{6} + \frac{58}{121} a^{5} - \frac{19}{121} a^{4} + \frac{1}{11} a^{3} - \frac{9}{22} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{322102} a^{19} - \frac{23}{161051} a^{16} - \frac{19}{322102} a^{15} - \frac{46}{161051} a^{14} - \frac{527}{322102} a^{13} - \frac{4682}{161051} a^{12} - \frac{881}{161051} a^{11} - \frac{5979}{322102} a^{10} + \frac{4325}{161051} a^{9} + \frac{5384}{14641} a^{8} - \frac{1497}{29282} a^{7} + \frac{273}{1331} a^{6} - \frac{1251}{2662} a^{5} + \frac{35}{121} a^{4} + \frac{35}{242} a^{3} - \frac{2}{11} a^{2} + \frac{5}{22} a$, $\frac{1}{3936238259090089651234959463183764000892994246943932128805319703576891859588} a^{20} + \frac{269050871906518531432989546747588579707670046416072680426668083443287}{357839841735462695566814496653069454626635840631266557164119973052444714508} a^{19} + \frac{37231490645437361886351848711497330281891008249278481810960217489469}{32530894703223881415164954241188132238785076421024232469465452095676792228} a^{18} - \frac{140184198307185532337284061303474222031045434690009709869503358155737747}{1968119129545044825617479731591882000446497123471966064402659851788445929794} a^{17} - \frac{661651204121127669990220419421018342318336790539507192201229229751372857}{3936238259090089651234959463183764000892994246943932128805319703576891859588} a^{16} - \frac{47992827226915342515624129321004514187277822507752921586345345151043668}{984059564772522412808739865795941000223248561735983032201329925894222964897} a^{15} + \frac{7346909271787057467779814248568796527902903955532280754084760841438548985}{3936238259090089651234959463183764000892994246943932128805319703576891859588} a^{14} + \frac{584564266219265394060672971110723881279008190328555666795421900984247475}{3936238259090089651234959463183764000892994246943932128805319703576891859588} a^{13} - \frac{107792745263540717985513452470880633645521292134718272452000921437022921511}{3936238259090089651234959463183764000892994246943932128805319703576891859588} a^{12} - \frac{170150805811122390310564706316575711841068869397895204113804411447460237841}{3936238259090089651234959463183764000892994246943932128805319703576891859588} a^{11} + \frac{30398966784400852841123732476041731996216676394963507301302689894723818777}{984059564772522412808739865795941000223248561735983032201329925894222964897} a^{10} - \frac{5541467937293705851622131594838361127660982653557966026741303804234060545}{16265447351611940707582477120594066119392538210512116234732726047838396114} a^{9} - \frac{55903643745814319181609754860993906784440600787090140860255067960782505}{272536056158006622670841200802033095679082894616349243841675531646949516} a^{8} - \frac{2387185796442553943523053055740263096274338655725865943959947868242147613}{32530894703223881415164954241188132238785076421024232469465452095676792228} a^{7} - \frac{5474905152633147217192584086888867201349687606368056637984667745823543229}{16265447351611940707582477120594066119392538210512116234732726047838396114} a^{6} + \frac{86750557824313618626345796926358917173181516731411002111247717282092065}{739338515982360941253748960027003005426933555023278010669669365810836187} a^{5} - \frac{479073405218248836319957366512813933754477694310813920825220930566250521}{1478677031964721882507497920054006010853867110046556021339338731621672374} a^{4} + \frac{20804107968174580589499251035337746055377649470555042001270086566796405}{268850369448131251364999621828001092882521292735737458425334314840304068} a^{3} + \frac{59908002637731898206141013547952445790591505126015504169849562757801717}{268850369448131251364999621828001092882521292735737458425334314840304068} a^{2} - \frac{4056030331557288058543583358261119969069115198512680415798297861862277}{24440942677102841033181783802545553898411026612339768947757664985482188} a - \frac{724627437137591360936570690827153696207637058932741687502338437720533}{2221903879736621912107434891140504899855547873849069904341605907771108}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34567368833000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 20 conjugacy class representatives for t21n25 |
| Character table for t21n25 |
Intermediate fields
| 3.1.891.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |