Normalized defining polynomial
\( x^{21} - 3 x^{20} - 621 x^{19} + 7807 x^{18} - 543456 x^{17} + 80623634 x^{16} - 4635953607 x^{15} + 155406985707 x^{14} - 3705859606469 x^{13} + 71679958343819 x^{12} - 1247533795041060 x^{11} + 20213240958670760 x^{10} - 274492120954513017 x^{9} + 2520008448643564047 x^{8} - 9084224812998996279 x^{7} - 81390216175476678839 x^{6} + 1071605630606569600064 x^{5} - 2263522908572035410110 x^{4} - 33863314750260563653093 x^{3} + 283467196064582172225401 x^{2} - 912333939839097504347263 x + 1184058275409918144914281 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1306137846196771424321284975759299211270747610069719686230406537457249361084416=2^{14}\cdot 19^{10}\cdot 113^{6}\cdot 8443^{6}\cdot 16073^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $5245.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 113, 8443, 16073$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{38} a^{13} - \frac{3}{19} a^{12} + \frac{7}{38} a^{11} - \frac{5}{38} a^{10} + \frac{3}{38} a^{9} - \frac{15}{38} a^{8} + \frac{13}{38} a^{7} + \frac{1}{38} a^{6} - \frac{13}{38} a^{5} - \frac{13}{38} a^{4} + \frac{15}{38} a^{3} - \frac{5}{38} a^{2} + \frac{3}{38}$, $\frac{1}{38} a^{14} + \frac{9}{38} a^{12} - \frac{1}{38} a^{11} - \frac{4}{19} a^{10} + \frac{3}{38} a^{9} - \frac{1}{38} a^{8} - \frac{8}{19} a^{7} - \frac{7}{38} a^{6} - \frac{15}{38} a^{5} - \frac{3}{19} a^{4} + \frac{9}{38} a^{3} + \frac{4}{19} a^{2} - \frac{8}{19} a + \frac{9}{19}$, $\frac{1}{76} a^{15} + \frac{15}{76} a^{12} - \frac{7}{38} a^{11} + \frac{5}{38} a^{10} + \frac{5}{38} a^{9} - \frac{7}{38} a^{8} - \frac{5}{38} a^{7} - \frac{6}{19} a^{6} - \frac{11}{38} a^{5} - \frac{13}{38} a^{4} + \frac{25}{76} a^{3} + \frac{5}{38} a^{2} + \frac{9}{38} a - \frac{27}{76}$, $\frac{1}{76} a^{16} - \frac{1}{76} a^{13} + \frac{3}{38} a^{12} + \frac{3}{19} a^{11} + \frac{7}{38} a^{10} + \frac{7}{38} a^{9} - \frac{9}{19} a^{8} - \frac{1}{19} a^{7} - \frac{1}{2} a^{6} - \frac{2}{19} a^{5} + \frac{5}{76} a^{4} - \frac{1}{38} a^{3} - \frac{4}{19} a^{2} - \frac{27}{76} a + \frac{7}{19}$, $\frac{1}{1444} a^{17} + \frac{5}{1444} a^{16} + \frac{3}{1444} a^{15} - \frac{9}{1444} a^{14} + \frac{1}{1444} a^{13} - \frac{289}{1444} a^{12} + \frac{10}{361} a^{11} + \frac{89}{722} a^{10} + \frac{29}{361} a^{9} - \frac{299}{722} a^{8} + \frac{48}{361} a^{7} - \frac{335}{722} a^{6} - \frac{27}{76} a^{5} - \frac{311}{1444} a^{4} - \frac{479}{1444} a^{3} + \frac{543}{1444} a^{2} - \frac{153}{1444} a + \frac{675}{1444}$, $\frac{1}{1444} a^{18} - \frac{3}{1444} a^{16} - \frac{5}{1444} a^{15} + \frac{2}{361} a^{14} - \frac{9}{1444} a^{13} - \frac{141}{722} a^{12} - \frac{15}{361} a^{11} - \frac{45}{722} a^{10} + \frac{1}{19} a^{9} - \frac{31}{361} a^{8} - \frac{56}{361} a^{7} - \frac{659}{1444} a^{6} + \frac{117}{361} a^{5} - \frac{159}{1444} a^{4} + \frac{373}{1444} a^{3} + \frac{62}{361} a^{2} + \frac{433}{1444} a - \frac{60}{361}$, $\frac{1}{2888} a^{19} - \frac{1}{2888} a^{18} - \frac{3}{1444} a^{16} - \frac{2}{361} a^{15} + \frac{4}{361} a^{14} - \frac{23}{2888} a^{13} + \frac{153}{2888} a^{12} - \frac{63}{722} a^{11} + \frac{59}{361} a^{10} - \frac{77}{722} a^{9} - \frac{141}{722} a^{8} + \frac{179}{2888} a^{7} - \frac{275}{2888} a^{6} - \frac{3}{38} a^{5} + \frac{341}{1444} a^{4} - \frac{67}{361} a^{3} + \frac{121}{722} a^{2} + \frac{1091}{2888} a - \frac{965}{2888}$, $\frac{1}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{20} + \frac{3432333850365319943256930641899929076600962249130202275107114983796338979575282741001325182447875435391111859431035490850134856979836922521090470865410466937860468869265816847605764107866235570781970985082090195}{32261254995488379428847481234928555952876951313838597590590333408716077307804301386642886912883553663492347959176055922181884520828201137947195884062804821970124409306888021204835926990575227485053563629609059249636} a^{19} - \frac{519168611254982139949410829696344062012137240442882044855639245238087370260876339737648241592537743254650259111695247816752376498028447380940110623891245019127388667194887319142358084975664107983935940740055805}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{18} - \frac{6885257031124779040853415015582119656928349018450827111561247271817092440857350042563592318975337036376562177814505802465869284108419649300280597021588528296797381332965749715099220469229740731546096020252702695}{32261254995488379428847481234928555952876951313838597590590333408716077307804301386642886912883553663492347959176055922181884520828201137947195884062804821970124409306888021204835926990575227485053563629609059249636} a^{17} + \frac{154280990843872115186362432311136416770893109859040016896594544127674437069048467119658986090810656356185833073050005047130466478609104476618629694440897049581585745037724393301514425016609758511789683963597826375}{32261254995488379428847481234928555952876951313838597590590333408716077307804301386642886912883553663492347959176055922181884520828201137947195884062804821970124409306888021204835926990575227485053563629609059249636} a^{16} + \frac{1008556257535180804808541750218201787012554272891056954164657141236971675587092604469743511853532902608466267428999411853476154014111217801014950006528530856015419741152220716574116967228711462217364227134620603}{393429938969370480839603429694250682352157942851690214519394309862391186680540260812718133083945776384053023892390925880266884400343916316429218098326888072806395235449853917132145451104575944939677605239134868898} a^{15} + \frac{757382564944260609034147944838614853792351661952646199072985513628897711539450525208198437120337413136665274138698046980945245355063473556366794516264291352672724246876591174960278923626510553890804715159255186257}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{14} - \frac{197198629607330943629722166125376517593374131300074651617223150256001643055745977230555529002544229111805670275792664770581397557029890095447576389856128875459458937156622571953343295384494170197291203102761602535}{16130627497744189714423740617464277976438475656919298795295166704358038653902150693321443456441776831746173979588027961090942260414100568973597942031402410985062204653444010602417963495287613742526781814804529624818} a^{13} + \frac{10738246026187917028846437206427776429603608291347039474477064044336196047861581515474111509054546799351710333996727839521449968058093253255886247213926446436895194158360761400635962265288031973943867399981268386193}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{12} - \frac{290674206026177002831425529150835377560894387047091910953368693430256715605068732743831208440365463290176286335106653522970093988279675928266374310439619547340688687997885899976820092325674911038589295000617894358}{8065313748872094857211870308732138988219237828459649397647583352179019326951075346660721728220888415873086989794013980545471130207050284486798971015701205492531102326722005301208981747643806871263390907402264812409} a^{11} - \frac{829786191762595583867810739045792694400951516656695667206099682727479518942438416882838850274889739515328804781739964842695647802749365005834578685289435742017274926409780728208598130640676505942984735153372302058}{8065313748872094857211870308732138988219237828459649397647583352179019326951075346660721728220888415873086989794013980545471130207050284486798971015701205492531102326722005301208981747643806871263390907402264812409} a^{10} - \frac{1547260517129463469453085800750881964843267583595982397808283351132166041366580257497208966608061259037326998055919860689608595050425759063721330604692159641256665693199694636192400108834241780545692922375660370772}{8065313748872094857211870308732138988219237828459649397647583352179019326951075346660721728220888415873086989794013980545471130207050284486798971015701205492531102326722005301208981747643806871263390907402264812409} a^{9} - \frac{15022521567273321266715275934235671794921094070429254207713876941792917327289373469738577879728014131693156551582689005862521714012781810393589217728582356178981562087941701169170865968695502796836003708816131815605}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{8} - \frac{1233178153958055815764428073803632861298803458435193820402053268560182482734437905521354287993535392459465472586322209868089109491849903819145591879619817223601153931909161679361907447301980762135572443470840558825}{32261254995488379428847481234928555952876951313838597590590333408716077307804301386642886912883553663492347959176055922181884520828201137947195884062804821970124409306888021204835926990575227485053563629609059249636} a^{7} + \frac{11988320075481639643704132150300226033528241738494049809356021023480507513844828034658561207125532039741863082885652618696515074330128121167124051875609659352615206587494780743690235147452860132445799123605820672405}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{6} + \frac{12652653459326727610580552465704731308778462492827146033684194044907572103868027939210996721420368158959749776785163912430798118675052096615928376000339194319484897247476880152735194810261600483382822230303153403701}{32261254995488379428847481234928555952876951313838597590590333408716077307804301386642886912883553663492347959176055922181884520828201137947195884062804821970124409306888021204835926990575227485053563629609059249636} a^{5} + \frac{5728236432023763447383050898926917660212605444562987152995825324614129246401729894173354118415074064641948363321342895418914960059057654480890696342927565311619488634963725689756643069619022524494255570504731627809}{32261254995488379428847481234928555952876951313838597590590333408716077307804301386642886912883553663492347959176055922181884520828201137947195884062804821970124409306888021204835926990575227485053563629609059249636} a^{4} + \frac{552371316321905071469768985867565727669546059489804376293667128695023398396894156376380004606567623953287835277230503272771905949794953364938652875897832029478864044286389908879890604807122654772914061865037420832}{8065313748872094857211870308732138988219237828459649397647583352179019326951075346660721728220888415873086989794013980545471130207050284486798971015701205492531102326722005301208981747643806871263390907402264812409} a^{3} + \frac{4335270678732316737920873755200234729377375585869134650071558090948719329871528892647812927896395844779022043719120480047180627187751731611187978858444933329658603317315519762265881788409074985965174993143469497115}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272} a^{2} - \frac{3099110644079496565393095368901431501522980257357616612024230744845639965936266377438456953874111421971869638053426306903198059870651900875316963111203403637592292064288075783453666266802951166609432279072563404408}{8065313748872094857211870308732138988219237828459649397647583352179019326951075346660721728220888415873086989794013980545471130207050284486798971015701205492531102326722005301208981747643806871263390907402264812409} a - \frac{9295943106774925609879526761552357028483449603343752463419892867139663586076608379194254944894649593801519998394386489237038790341583905197089068640688084378658122882153557226873511773825393101421705762875899594417}{64522509990976758857694962469857111905753902627677195181180666817432154615608602773285773825767107326984695918352111844363769041656402275894391768125609643940248818613776042409671853981150454970107127259218118499272}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8232 |
| The 43 conjugacy class representatives for t21n47 |
| Character table for t21n47 is not computed |
Intermediate fields
| 3.1.76.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.7.6.3 | $x^{7} - 1017$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 8443 | Data not computed | ||||||
| 16073 | Data not computed | ||||||