/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^21 - 28*x^15 - 24*x^14 + 196*x^9 + 336*x^8 + 144*x^7 + 1372*x^3 + 3528*x^2 + 3024*x + 864, 21, 155, [1, 10], 1167905317988463581983363308425635430400000000, [2, 3, 5, 7], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, 1/2*a^9, 1/2*a^10, 1/2*a^11, 1/2*a^12, 1/4*a^13 - 1/2*a^8 - 1/2*a^7 - 1/2*a^4, 1/4*a^14 - 1/2*a^8 - 1/2*a^5, 1/4*a^15 - 1/2*a^6, 1/4*a^16 - 1/2*a^7, 1/4*a^17 - 1/2*a^8, 1/4*a^18, 1/559872*a^19 - 4999/46656*a^18 + 529/5184*a^17 + 17/648*a^16 - 43/432*a^15 - 1/12*a^14 + 11657/139968*a^13 + 1/23328*a^12 + 833/3888*a^11 - 119/648*a^10 + 17/108*a^9 - 5/18*a^8 - 46607/139968*a^7 + 343/139968*a + 49/23328, 1/78364164096*a^20 + 6665/13060694016*a^19 + 44422225/2176782336*a^18 + 31731929/362797056*a^17 - 2260319/60466176*a^16 + 1129385/10077696*a^15 + 1772006537/19591041024*a^14 + 24949/279936*a^13 + 3101/46656*a^12 - 443/7776*a^11 - 307/1296*a^10 + 13/216*a^9 - 3809369039/19591041024*a^8 - 1088064569/3265173504*a^7 + 343/19591041024*a^2 + 1143121/1632586752*a + 326599/544195584], 0, 1, [], 1, [ (77677399303)/(78364164096)*a^(20) - (11488845025)/(13060694016)*a^(19) + (1697274103)/(2176782336)*a^(18) - (250469233)/(362797056)*a^(17) + (36924391)/(60466176)*a^(16) - (5438209)/(10077696)*a^(15) - (534408087361)/(19591041024)*a^(14) + (117649)/(279936)*a^(13) - (16807)/(46656)*a^(12) + (2401)/(7776)*a^(11) - (343)/(1296)*a^(10) + (49)/(216)*a^(9) + (3802383196759)/(19591041024)*a^(8) + (525074379601)/(3265173504)*a^(7) + (26643347960929)/(19591041024)*a^(2) + (3738951926983)/(1632586752)*a + (525074379601)/(544195584) , (50724094814215)/(78364164096)*a^(20) - (7421708903041)/(13060694016)*a^(19) + (1085324861623)/(2176782336)*a^(18) - (158649731665)/(362797056)*a^(17) + (23198751847)/(60466176)*a^(16) - (3394835617)/(10077696)*a^(15) - (349266986098753)/(19591041024)*a^(14) + (10772141)/(93312)*a^(13) - (1471115)/(15552)*a^(12) + (212381)/(2592)*a^(11) - (34259)/(432)*a^(10) + (5177)/(72)*a^(9) + (2484345998103895)/(19591041024)*a^(8) + (346633584651697)/(3265173504)*a^(7) - (51)/(2)*a^(6) - 26*a^(5) + (109)/(2)*a^(4) + 76*a^(3) + (17395798094901601)/(19591041024)*a^(2) + (2455179125348503)/(1632586752)*a + (346642835976625)/(544195584) , (5462797807)/(26121388032)*a^(20) + (1053447719)/(4353564672)*a^(19) - (941858273)/(725594112)*a^(18) + (168010199)/(120932352)*a^(17) + (42996559)/(20155392)*a^(16) - (15353593)/(3359232)*a^(15) - (16698707737)/(6530347008)*a^(14) - (797849)/(93312)*a^(13) + (93983)/(15552)*a^(12) + (20455)/(2592)*a^(11) - (22609)/(432)*a^(10) + (1615)/(72)*a^(9) + (845068607167)/(6530347008)*a^(8) + (21979968649)/(1088391168)*a^(7) + (15)/(2)*a^(6) + 65*a^(5) - 250*a^(4) - 92*a^(3) + (5151973845817)/(6530347008)*a^(2) + (484770913087)/(544195584)*a + (49552544905)/(181398528) , (378482911)/(15116544)*a^(20) - (4878157)/(157464)*a^(19) + (15904273)/(419904)*a^(18) - (1585223)/(34992)*a^(17) + (612091)/(11664)*a^(16) - (56315)/(972)*a^(15) - (2426329705)/(3779136)*a^(14) + (15035161)/(69984)*a^(13) - (3360103)/(11664)*a^(12) + (736345)/(1944)*a^(11) - (159115)/(324)*a^(10) + (16910)/(27)*a^(9) + (15605074927)/(3779136)*a^(8) + (1035589601)/(314928)*a^(7) - (967)/(2)*a^(6) + 617*a^(5) - 743*a^(4) + 861*a^(3) + (126059398153)/(3779136)*a^(2) + (29481661469)/(629856)*a + (913659977)/(52488) , (455337583431191)/(39182082048)*a^(20) - (65035160979809)/(6530347008)*a^(19) + (9282917988839)/(1088391168)*a^(18) - (1324095075089)/(181398528)*a^(17) + (188734614071)/(30233088)*a^(16) - (26880874625)/(5038848)*a^(15) - (3142737127180721)/(9795520512)*a^(14) - (5749063)/(1458)*a^(13) + (1708373)/(486)*a^(12) - (508021)/(162)*a^(11) + (150707)/(54)*a^(10) - (22436)/(9)*a^(9) + (22333158669311591)/(9795520512)*a^(8) + (3184775656017329)/(1632586752)*a^(7) + (1317)/(2)*a^(6) - (1195)/(2)*a^(5) + (1017)/(2)*a^(4) - 485*a^(3) + (156184239140118737)/(9795520512)*a^(2) + (22313450042751263)/(816293376)*a + (3186013428873137)/(272097792) , (233307534999737)/(6530347008)*a^(20) - (35443748217023)/(1088391168)*a^(19) + (5375181173513)/(181398528)*a^(18) - (813850448879)/(30233088)*a^(17) + (123039414233)/(5038848)*a^(16) - (18574464479)/(839808)*a^(15) - (1600483169158655)/(1632586752)*a^(14) + (282356299)/(7776)*a^(13) - (41224189)/(1296)*a^(12) + (6018199)/(216)*a^(11) - (878491)/(36)*a^(10) + (128059)/(6)*a^(9) + (11401481069601641)/(1632586752)*a^(8) + (1534003415669903)/(272097792)*a^(7) - 3780*a^(6) + (6603)/(2)*a^(5) - (5767)/(2)*a^(4) + 2379*a^(3) + (80020479769607135)/(1632586752)*a^(2) + (11069699226502697)/(136048896)*a + (1532822964748943)/(45349632) , (14671349045)/(19591041024)*a^(20) - (1557523427)/(3265173504)*a^(19) - (459687355)/(544195584)*a^(18) + (15507757)/(90699264)*a^(17) + (16673621)/(15116544)*a^(16) + (1693789)/(2519424)*a^(15) - (112538015651)/(4897760256)*a^(14) - (6307)/(864)*a^(13) + (6229)/(144)*a^(12) + (449)/(24)*a^(11) - (239)/(4)*a^(10) - (87)/(2)*a^(9) + (1120512444197)/(4897760256)*a^(8) + (227035443827)/(816293376)*a^(7) - (745)/(2)*a^(6) - (1315)/(2)*a^(5) + 509*a^(4) + 1296*a^(3) + (1966274802179)/(4897760256)*a^(2) - (128732935387)/(408146688)*a - (20709595789)/(136048896) , (731338010495)/(8707129344)*a^(20) - (200842253897)/(1451188224)*a^(19) + (60979395503)/(241864704)*a^(18) - (15529850009)/(40310784)*a^(17) + (4180888031)/(6718464)*a^(16) - (1061510249)/(1119744)*a^(15) - (2079501310217)/(2176782336)*a^(14) - (8316721)/(31104)*a^(13) - (3962201)/(5184)*a^(12) + (277391)/(864)*a^(11) - (300545)/(144)*a^(10) + (72023)/(24)*a^(9) + (26252822475599)/(2176782336)*a^(8) + (4037767365881)/(362797056)*a^(7) + (9907)/(2)*a^(6) + 12913*a^(5) + 2636*a^(4) + 13567*a^(3) + (203630175167273)/(2176782336)*a^(2) + (19015394409743)/(181398528)*a + (2041960294649)/(60466176) , (6907866715265)/(39182082048)*a^(20) - (1967098066535)/(6530347008)*a^(19) - (320581926415)/(1088391168)*a^(18) + (71120193673)/(181398528)*a^(17) + (20165244257)/(30233088)*a^(16) - (2699125703)/(5038848)*a^(15) - (60171117219575)/(9795520512)*a^(14) + (342515411)/(69984)*a^(13) + (208750315)/(11664)*a^(12) - (8287369)/(1944)*a^(11) - (10320497)/(324)*a^(10) - (11252)/(27)*a^(9) + (876007582601393)/(9795520512)*a^(8) + (22182393264983)/(1632586752)*a^(7) - (452589)/(2)*a^(6) - (226941)/(2)*a^(5) + (727549)/(2)*a^(4) + 282702*a^(3) - (3149172676153129)/(9795520512)*a^(2) - (343862922570487)/(816293376)*a - (33458884221097)/(272097792) , (61106511119837)/(78364164096)*a^(20) - (13838557670651)/(13060694016)*a^(19) + (3089027173229)/(2176782336)*a^(18) - (679845429995)/(362797056)*a^(17) + (147181144061)/(60466176)*a^(16) - (31317538139)/(10077696)*a^(15) - (351661552030907)/(19591041024)*a^(14) + (580565591)/(93312)*a^(13) - (135811409)/(15552)*a^(12) + (31485719)/(2592)*a^(11) - (7180649)/(432)*a^(10) + (1625567)/(72)*a^(9) + (2403785883077453)/(19591041024)*a^(8) + (307399815117323)/(3265173504)*a^(7) - (34573)/(2)*a^(6) + (45771)/(2)*a^(5) - 30962*a^(4) + 39296*a^(3) + (19948322140609307)/(19591041024)*a^(2) + (2222272916774093)/(1632586752)*a + (265920139313675)/(544195584) ], 643181672097000, [[x^3 + 2*x - 2, 1]]]