Normalized defining polynomial
\( x^{21} - 28x^{15} - 24x^{14} + 196x^{9} + 336x^{8} + 144x^{7} + 1372x^{3} + 3528x^{2} + 3024x + 864 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[1, 10]$ |
| |
| Discriminant: |
\(1167905317988463581983363308425635430400000000\)
\(\medspace = 2^{24}\cdot 3^{18}\cdot 5^{8}\cdot 7^{28}\)
|
| |
| Root discriminant: | \(139.98\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{4}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{14}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{16}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{17}-\frac{1}{2}a^{8}$, $\frac{1}{4}a^{18}$, $\frac{1}{559872}a^{19}-\frac{4999}{46656}a^{18}+\frac{529}{5184}a^{17}+\frac{17}{648}a^{16}-\frac{43}{432}a^{15}-\frac{1}{12}a^{14}+\frac{11657}{139968}a^{13}+\frac{1}{23328}a^{12}+\frac{833}{3888}a^{11}-\frac{119}{648}a^{10}+\frac{17}{108}a^{9}-\frac{5}{18}a^{8}-\frac{46607}{139968}a^{7}+\frac{343}{139968}a+\frac{49}{23328}$, $\frac{1}{78364164096}a^{20}+\frac{6665}{13060694016}a^{19}+\frac{44422225}{2176782336}a^{18}+\frac{31731929}{362797056}a^{17}-\frac{2260319}{60466176}a^{16}+\frac{1129385}{10077696}a^{15}+\frac{1772006537}{19591041024}a^{14}+\frac{24949}{279936}a^{13}+\frac{3101}{46656}a^{12}-\frac{443}{7776}a^{11}-\frac{307}{1296}a^{10}+\frac{13}{216}a^{9}-\frac{3809369039}{19591041024}a^{8}-\frac{1088064569}{3265173504}a^{7}+\frac{343}{19591041024}a^{2}+\frac{1143121}{1632586752}a+\frac{326599}{544195584}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{77677399303}{78364164096}a^{20}-\frac{11488845025}{13060694016}a^{19}+\frac{1697274103}{2176782336}a^{18}-\frac{250469233}{362797056}a^{17}+\frac{36924391}{60466176}a^{16}-\frac{5438209}{10077696}a^{15}-\frac{534408087361}{19591041024}a^{14}+\frac{117649}{279936}a^{13}-\frac{16807}{46656}a^{12}+\frac{2401}{7776}a^{11}-\frac{343}{1296}a^{10}+\frac{49}{216}a^{9}+\frac{3802383196759}{19591041024}a^{8}+\frac{525074379601}{3265173504}a^{7}+\frac{26643347960929}{19591041024}a^{2}+\frac{3738951926983}{1632586752}a+\frac{525074379601}{544195584}$, $\frac{50724094814215}{78364164096}a^{20}-\frac{7421708903041}{13060694016}a^{19}+\frac{1085324861623}{2176782336}a^{18}-\frac{158649731665}{362797056}a^{17}+\frac{23198751847}{60466176}a^{16}-\frac{3394835617}{10077696}a^{15}-\frac{349266986098753}{19591041024}a^{14}+\frac{10772141}{93312}a^{13}-\frac{1471115}{15552}a^{12}+\frac{212381}{2592}a^{11}-\frac{34259}{432}a^{10}+\frac{5177}{72}a^{9}+\frac{24\cdots 95}{19591041024}a^{8}+\frac{346633584651697}{3265173504}a^{7}-\frac{51}{2}a^{6}-26a^{5}+\frac{109}{2}a^{4}+76a^{3}+\frac{17\cdots 01}{19591041024}a^{2}+\frac{24\cdots 03}{1632586752}a+\frac{346642835976625}{544195584}$, $\frac{5462797807}{26121388032}a^{20}+\frac{1053447719}{4353564672}a^{19}-\frac{941858273}{725594112}a^{18}+\frac{168010199}{120932352}a^{17}+\frac{42996559}{20155392}a^{16}-\frac{15353593}{3359232}a^{15}-\frac{16698707737}{6530347008}a^{14}-\frac{797849}{93312}a^{13}+\frac{93983}{15552}a^{12}+\frac{20455}{2592}a^{11}-\frac{22609}{432}a^{10}+\frac{1615}{72}a^{9}+\frac{845068607167}{6530347008}a^{8}+\frac{21979968649}{1088391168}a^{7}+\frac{15}{2}a^{6}+65a^{5}-250a^{4}-92a^{3}+\frac{5151973845817}{6530347008}a^{2}+\frac{484770913087}{544195584}a+\frac{49552544905}{181398528}$, $\frac{378482911}{15116544}a^{20}-\frac{4878157}{157464}a^{19}+\frac{15904273}{419904}a^{18}-\frac{1585223}{34992}a^{17}+\frac{612091}{11664}a^{16}-\frac{56315}{972}a^{15}-\frac{2426329705}{3779136}a^{14}+\frac{15035161}{69984}a^{13}-\frac{3360103}{11664}a^{12}+\frac{736345}{1944}a^{11}-\frac{159115}{324}a^{10}+\frac{16910}{27}a^{9}+\frac{15605074927}{3779136}a^{8}+\frac{1035589601}{314928}a^{7}-\frac{967}{2}a^{6}+617a^{5}-743a^{4}+861a^{3}+\frac{126059398153}{3779136}a^{2}+\frac{29481661469}{629856}a+\frac{913659977}{52488}$, $\frac{455337583431191}{39182082048}a^{20}-\frac{65035160979809}{6530347008}a^{19}+\frac{9282917988839}{1088391168}a^{18}-\frac{1324095075089}{181398528}a^{17}+\frac{188734614071}{30233088}a^{16}-\frac{26880874625}{5038848}a^{15}-\frac{31\cdots 21}{9795520512}a^{14}-\frac{5749063}{1458}a^{13}+\frac{1708373}{486}a^{12}-\frac{508021}{162}a^{11}+\frac{150707}{54}a^{10}-\frac{22436}{9}a^{9}+\frac{22\cdots 91}{9795520512}a^{8}+\frac{31\cdots 29}{1632586752}a^{7}+\frac{1317}{2}a^{6}-\frac{1195}{2}a^{5}+\frac{1017}{2}a^{4}-485a^{3}+\frac{15\cdots 37}{9795520512}a^{2}+\frac{22\cdots 63}{816293376}a+\frac{31\cdots 37}{272097792}$, $\frac{233307534999737}{6530347008}a^{20}-\frac{35443748217023}{1088391168}a^{19}+\frac{5375181173513}{181398528}a^{18}-\frac{813850448879}{30233088}a^{17}+\frac{123039414233}{5038848}a^{16}-\frac{18574464479}{839808}a^{15}-\frac{16\cdots 55}{1632586752}a^{14}+\frac{282356299}{7776}a^{13}-\frac{41224189}{1296}a^{12}+\frac{6018199}{216}a^{11}-\frac{878491}{36}a^{10}+\frac{128059}{6}a^{9}+\frac{11\cdots 41}{1632586752}a^{8}+\frac{15\cdots 03}{272097792}a^{7}-3780a^{6}+\frac{6603}{2}a^{5}-\frac{5767}{2}a^{4}+2379a^{3}+\frac{80\cdots 35}{1632586752}a^{2}+\frac{11\cdots 97}{136048896}a+\frac{15\cdots 43}{45349632}$, $\frac{14671349045}{19591041024}a^{20}-\frac{1557523427}{3265173504}a^{19}-\frac{459687355}{544195584}a^{18}+\frac{15507757}{90699264}a^{17}+\frac{16673621}{15116544}a^{16}+\frac{1693789}{2519424}a^{15}-\frac{112538015651}{4897760256}a^{14}-\frac{6307}{864}a^{13}+\frac{6229}{144}a^{12}+\frac{449}{24}a^{11}-\frac{239}{4}a^{10}-\frac{87}{2}a^{9}+\frac{1120512444197}{4897760256}a^{8}+\frac{227035443827}{816293376}a^{7}-\frac{745}{2}a^{6}-\frac{1315}{2}a^{5}+509a^{4}+1296a^{3}+\frac{1966274802179}{4897760256}a^{2}-\frac{128732935387}{408146688}a-\frac{20709595789}{136048896}$, $\frac{731338010495}{8707129344}a^{20}-\frac{200842253897}{1451188224}a^{19}+\frac{60979395503}{241864704}a^{18}-\frac{15529850009}{40310784}a^{17}+\frac{4180888031}{6718464}a^{16}-\frac{1061510249}{1119744}a^{15}-\frac{2079501310217}{2176782336}a^{14}-\frac{8316721}{31104}a^{13}-\frac{3962201}{5184}a^{12}+\frac{277391}{864}a^{11}-\frac{300545}{144}a^{10}+\frac{72023}{24}a^{9}+\frac{26252822475599}{2176782336}a^{8}+\frac{4037767365881}{362797056}a^{7}+\frac{9907}{2}a^{6}+12913a^{5}+2636a^{4}+13567a^{3}+\frac{203630175167273}{2176782336}a^{2}+\frac{19015394409743}{181398528}a+\frac{2041960294649}{60466176}$, $\frac{6907866715265}{39182082048}a^{20}-\frac{1967098066535}{6530347008}a^{19}-\frac{320581926415}{1088391168}a^{18}+\frac{71120193673}{181398528}a^{17}+\frac{20165244257}{30233088}a^{16}-\frac{2699125703}{5038848}a^{15}-\frac{60171117219575}{9795520512}a^{14}+\frac{342515411}{69984}a^{13}+\frac{208750315}{11664}a^{12}-\frac{8287369}{1944}a^{11}-\frac{10320497}{324}a^{10}-\frac{11252}{27}a^{9}+\frac{876007582601393}{9795520512}a^{8}+\frac{22182393264983}{1632586752}a^{7}-\frac{452589}{2}a^{6}-\frac{226941}{2}a^{5}+\frac{727549}{2}a^{4}+282702a^{3}-\frac{31\cdots 29}{9795520512}a^{2}-\frac{343862922570487}{816293376}a-\frac{33458884221097}{272097792}$, $\frac{61106511119837}{78364164096}a^{20}-\frac{13838557670651}{13060694016}a^{19}+\frac{3089027173229}{2176782336}a^{18}-\frac{679845429995}{362797056}a^{17}+\frac{147181144061}{60466176}a^{16}-\frac{31317538139}{10077696}a^{15}-\frac{351661552030907}{19591041024}a^{14}+\frac{580565591}{93312}a^{13}-\frac{135811409}{15552}a^{12}+\frac{31485719}{2592}a^{11}-\frac{7180649}{432}a^{10}+\frac{1625567}{72}a^{9}+\frac{24\cdots 53}{19591041024}a^{8}+\frac{307399815117323}{3265173504}a^{7}-\frac{34573}{2}a^{6}+\frac{45771}{2}a^{5}-30962a^{4}+39296a^{3}+\frac{19\cdots 07}{19591041024}a^{2}+\frac{22\cdots 93}{1632586752}a+\frac{265920139313675}{544195584}$
|
| |
| Regulator: | \( 643181672097000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 643181672097000 \cdot 1}{2\cdot\sqrt{1167905317988463581983363308425635430400000000}}\cr\approx \mathstrut & 1.80479768812845 \end{aligned}\] (assuming GRH)
Galois group
$A_7^3.S_3$ (as 21T155):
| A non-solvable group of order 96018048000 |
| The 228 conjugacy class representatives for $A_7^3.S_3$ |
| Character table for $A_7^3.S_3$ |
Intermediate fields
| 3.1.140.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | $21$ | $15{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.9.0.1}{9} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | $15{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.1.18.22a1.4 | $x^{18} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2$ | $18$ | $1$ | $22$ | 18T434 | $$[\frac{14}{9}, \frac{14}{9}, \frac{14}{9}, \frac{14}{9}, \frac{14}{9}, \frac{14}{9}]_{9}^{6}$$ | |
|
\(3\)
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 3.6.3.18a116.1 | $x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 26 x^{12} + 27 x^{11} + 42 x^{10} + 42 x^{9} + 66 x^{8} + 57 x^{7} + 85 x^{6} + 78 x^{5} + 60 x^{4} + 50 x^{3} + 63 x^{2} + 42 x + 17$ | $3$ | $6$ | $18$ | 18T530 | not computed | |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.4.1.0a1.1 | $x^{4} + 4 x^{2} + 4 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 5.7.2.7a1.1 | $x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ | |
|
\(7\)
| 7.1.7.7a1.3 | $x^{7} + 21 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $$[\frac{7}{6}]_{6}$$ |
| 7.1.14.21a2.16 | $x^{14} + 21 x^{9} + 21 x^{8} + 21$ | $14$ | $1$ | $21$ | 14T14 | $$[\frac{7}{6}, \frac{5}{3}]_{6}$$ |