Normalized defining polynomial
\( x^{21} + 3948 x - 3760 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109859228784370619751451043062708918863565452080373568340816324198400000000000000000000=2^{38}\cdot 3^{18}\cdot 5^{20}\cdot 7^{22}\cdot 47^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12{,}507.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{8}$, $\frac{1}{12} a^{19} - \frac{1}{12} a^{18} + \frac{1}{12} a^{16} - \frac{1}{12} a^{15} + \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{36} a^{20} + \frac{1}{36} a^{19} + \frac{1}{36} a^{18} + \frac{1}{36} a^{17} + \frac{1}{36} a^{16} + \frac{1}{36} a^{15} + \frac{1}{36} a^{14} + \frac{1}{36} a^{13} + \frac{1}{36} a^{12} + \frac{1}{36} a^{11} - \frac{2}{9} a^{10} + \frac{5}{18} a^{9} + \frac{5}{18} a^{8} + \frac{5}{18} a^{7} + \frac{5}{18} a^{6} + \frac{5}{18} a^{5} + \frac{5}{18} a^{4} + \frac{5}{18} a^{3} + \frac{5}{18} a^{2} + \frac{5}{18} a + \frac{4}{9}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 25545471085854720000 |
| The 408 conjugacy class representatives for A21 are not computed |
| Character table for A21 is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.13.0.1}{13} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.7.8.5 | $x^{7} + 42 x^{2} + 7$ | $7$ | $1$ | $8$ | $F_7$ | $[4/3]_{3}^{2}$ |
| 7.7.7.6 | $x^{7} + 28 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| 7.7.7.1 | $x^{7} + 42 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| 47 | Data not computed | ||||||