Normalized defining polynomial
\( x^{20} - 29 x^{18} - 42 x^{17} + 86 x^{16} + 116 x^{15} - 355 x^{14} + 64 x^{13} + 1478 x^{12} - 3556 x^{11} + 2434 x^{10} - 20912 x^{9} + 50641 x^{8} + 47430 x^{7} - 47925 x^{6} - 330770 x^{5} + 314185 x^{4} + 517250 x^{3} - 1007000 x^{2} + 594300 x - 120475 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9806875082992983948596343994140625=5^{16}\cdot 6329^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6329$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{16} + \frac{1}{10} a^{14} - \frac{1}{5} a^{13} + \frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{3}{10} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{17} + \frac{1}{10} a^{15} - \frac{1}{5} a^{14} + \frac{1}{10} a^{13} + \frac{1}{10} a^{12} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{10} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{18} - \frac{1}{20} a^{17} - \frac{1}{20} a^{16} + \frac{1}{10} a^{15} + \frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{3}{20} a^{12} + \frac{1}{10} a^{11} - \frac{1}{20} a^{10} - \frac{7}{20} a^{9} + \frac{1}{5} a^{8} + \frac{1}{20} a^{7} + \frac{3}{20} a^{5} + \frac{2}{5} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{641122861321147362121808666529390720583839931834763780} a^{19} - \frac{1743264719439908521387602834232540003247314573514493}{128224572264229472424361733305878144116767986366952756} a^{18} + \frac{30642008567728117114980510603669348778656096978469333}{641122861321147362121808666529390720583839931834763780} a^{17} + \frac{2180876126592035611281315779950528576530315164181063}{320561430660573681060904333264695360291919965917381890} a^{16} + \frac{138461482103847709984953311637650426141963078947192323}{641122861321147362121808666529390720583839931834763780} a^{15} - \frac{21681466561002017905089128596933177413289334047757793}{128224572264229472424361733305878144116767986366952756} a^{14} + \frac{72769654727749610118048733542403493139023914525672961}{641122861321147362121808666529390720583839931834763780} a^{13} + \frac{25668375262240087782460813096670794934864960994621067}{320561430660573681060904333264695360291919965917381890} a^{12} - \frac{95177416928103993707756340636176780161120810165757439}{641122861321147362121808666529390720583839931834763780} a^{11} - \frac{117485420888276623175883204507342768407805320397593743}{641122861321147362121808666529390720583839931834763780} a^{10} + \frac{8896359844582440019668850066834330185740383215737741}{320561430660573681060904333264695360291919965917381890} a^{9} + \frac{59607187709481871516905117141542281365745941688147331}{128224572264229472424361733305878144116767986366952756} a^{8} + \frac{106725492240335083549313216056402668986150816860636933}{320561430660573681060904333264695360291919965917381890} a^{7} + \frac{223420721160792010780021845222588502522735786008364523}{641122861321147362121808666529390720583839931834763780} a^{6} - \frac{75659178644542662378946332041591089964768854572736857}{320561430660573681060904333264695360291919965917381890} a^{5} - \frac{177366608084078671131535683945077775524576754040994587}{641122861321147362121808666529390720583839931834763780} a^{4} + \frac{426854722901161089421116680422675087992002970797675}{2210768487314301248695891953549623174427034247706082} a^{3} + \frac{18875524687283422566550642517330097490061604543941085}{128224572264229472424361733305878144116767986366952756} a^{2} + \frac{5984547154012268517092642680278702447643098170979707}{128224572264229472424361733305878144116767986366952756} a - \frac{267230973606894620152169990524725186225012726291229}{811547925722971344457985653834671798207392318778182}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5121401083.12 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.625878765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 6329 | Data not computed | ||||||