Normalized defining polynomial
\( x^{20} - 6 x^{19} - 20 x^{18} + 126 x^{17} - 648 x^{16} - 3954 x^{15} + 7804 x^{14} + 52536 x^{13} + 27931 x^{12} - 275092 x^{11} - 810376 x^{10} - 399580 x^{9} + 2087755 x^{8} + 2499778 x^{7} - 2288088 x^{6} - 3024628 x^{5} + 1984585 x^{4} + 1671184 x^{3} - 844676 x^{2} - 497984 x - 56371 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97339589945843039759666267763507200000=2^{30}\cdot 5^{5}\cdot 11^{10}\cdot 5783^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 5783$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{15} - \frac{4}{11} a^{13} - \frac{5}{11} a^{12} - \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{3}{11} a^{9} - \frac{3}{11} a^{8} + \frac{5}{11} a^{7} + \frac{5}{11} a^{6} - \frac{5}{11} a^{4} - \frac{4}{11} a^{3} - \frac{3}{11} a^{2} + \frac{3}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{17} - \frac{5}{11} a^{15} - \frac{4}{11} a^{14} + \frac{1}{11} a^{13} + \frac{1}{11} a^{12} - \frac{3}{11} a^{11} - \frac{4}{11} a^{10} - \frac{2}{11} a^{9} + \frac{4}{11} a^{8} + \frac{3}{11} a^{7} - \frac{2}{11} a^{6} - \frac{5}{11} a^{5} - \frac{2}{11} a^{4} + \frac{3}{11} a^{3} + \frac{2}{11} a^{2} + \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{18} - \frac{2}{11} a^{15} + \frac{1}{11} a^{14} + \frac{3}{11} a^{13} + \frac{5}{11} a^{12} + \frac{2}{11} a^{11} + \frac{3}{11} a^{10} - \frac{3}{11} a^{9} - \frac{1}{11} a^{8} + \frac{1}{11} a^{7} - \frac{2}{11} a^{6} - \frac{2}{11} a^{5} + \frac{4}{11} a^{3} - \frac{2}{11} a^{2} - \frac{3}{11} a + \frac{5}{11}$, $\frac{1}{55646668560540894184064348231351792745677713198015146234517563043} a^{19} + \frac{1620120021124512543396431566421304661745200426475206717744265373}{55646668560540894184064348231351792745677713198015146234517563043} a^{18} - \frac{651660745573769265020043473225073413613285756511974730884128335}{55646668560540894184064348231351792745677713198015146234517563043} a^{17} + \frac{407653544043294637332107805475071647554958633429640723400454784}{55646668560540894184064348231351792745677713198015146234517563043} a^{16} + \frac{1667024077077841724006210725842625337136366256244101406638687524}{5058788050958263107642213475577435704152519381637740566774323913} a^{15} + \frac{603712097698694384689325108668246663505928791966775757333349576}{1918850640018651523588425801081096301575093558552246421879915967} a^{14} + \frac{22674380196527218711474372110610043545520283673945977176113914218}{55646668560540894184064348231351792745677713198015146234517563043} a^{13} + \frac{10980663524688623492728630058488418972862551962307306205277205860}{55646668560540894184064348231351792745677713198015146234517563043} a^{12} + \frac{837344355498740243951827897952056869491865056477767257058687062}{55646668560540894184064348231351792745677713198015146234517563043} a^{11} + \frac{24163783089389614054064780466132572924859710739543250571884320977}{55646668560540894184064348231351792745677713198015146234517563043} a^{10} + \frac{10188777951591479313762156315042586471412776950816099097484278580}{55646668560540894184064348231351792745677713198015146234517563043} a^{9} + \frac{2227545920667815461952603725800757929766239162450578501316860884}{5058788050958263107642213475577435704152519381637740566774323913} a^{8} - \frac{10464557538178432904562730697776281030501875473891024997624352744}{55646668560540894184064348231351792745677713198015146234517563043} a^{7} - \frac{1163102615538415572621390098785672140210846197097747663616694847}{5058788050958263107642213475577435704152519381637740566774323913} a^{6} - \frac{20662003907709224714595993150021665076453039956810765141589709738}{55646668560540894184064348231351792745677713198015146234517563043} a^{5} + \frac{17580781782933534025082211480024640766486562646570577292611906869}{55646668560540894184064348231351792745677713198015146234517563043} a^{4} - \frac{1689675616592744216703070768230768808764714394984899988644846306}{55646668560540894184064348231351792745677713198015146234517563043} a^{3} + \frac{23875083694530514565772495349204407540762253642964300084862878379}{55646668560540894184064348231351792745677713198015146234517563043} a^{2} - \frac{5515582206622170626387297485639735430605011354339561406014323353}{55646668560540894184064348231351792745677713198015146234517563043} a - \frac{212306968007911442519749528826075182295283305103078183689672147}{55646668560540894184064348231351792745677713198015146234517563043}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222619311064 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), 5.3.5783.1, 10.6.5515307956775936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5783 | Data not computed | ||||||