Normalized defining polynomial
\( x^{20} - 4 x^{19} - 13 x^{18} - 23 x^{17} + 564 x^{16} + 105 x^{15} - 7868 x^{14} + 6862 x^{13} + 44004 x^{12} - 52424 x^{11} - 158619 x^{10} + 215233 x^{9} + 412926 x^{8} - 733252 x^{7} - 339880 x^{6} + 1148862 x^{5} - 268349 x^{4} - 641995 x^{3} + 461753 x^{2} - 81127 x - 9203 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9725065664601656707693078997523858169=67^{6}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} + \frac{3}{8} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{14} + \frac{1}{8} a^{13} + \frac{3}{8} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a$, $\frac{1}{368} a^{18} - \frac{11}{368} a^{17} - \frac{1}{16} a^{16} - \frac{9}{368} a^{15} - \frac{5}{46} a^{14} + \frac{4}{23} a^{13} - \frac{13}{92} a^{12} - \frac{45}{184} a^{11} + \frac{61}{184} a^{10} - \frac{1}{2} a^{9} - \frac{45}{368} a^{8} + \frac{11}{23} a^{7} + \frac{137}{368} a^{6} + \frac{1}{368} a^{5} - \frac{91}{184} a^{4} - \frac{43}{368} a^{3} + \frac{25}{184} a^{2} + \frac{15}{92} a + \frac{111}{368}$, $\frac{1}{34232704225005077299663699218696681638192} a^{19} - \frac{21979713411032017658790462518185953595}{17116352112502538649831849609348340819096} a^{18} + \frac{25035654318838751402703735250891638991}{2139544014062817331228981201168542602387} a^{17} - \frac{354571126890535017324146410749100141145}{17116352112502538649831849609348340819096} a^{16} - \frac{9060798029210089067470815379518547319}{90323757849617618204917412186534780048} a^{15} + \frac{1631342770606639875636917156351809626715}{17116352112502538649831849609348340819096} a^{14} + \frac{1570474396181489515949498776096893918733}{8558176056251269324915924804674170409548} a^{13} - \frac{755948288518269594992570201016473115965}{8558176056251269324915924804674170409548} a^{12} + \frac{318433392110928086147184187475693662889}{17116352112502538649831849609348340819096} a^{11} - \frac{6616713477178776198253921467033636203249}{17116352112502538649831849609348340819096} a^{10} - \frac{3052975638294232641033917171006169249059}{34232704225005077299663699218696681638192} a^{9} + \frac{13836459522731823269178352105043486565441}{34232704225005077299663699218696681638192} a^{8} - \frac{4477731605615200068070294364664848153701}{34232704225005077299663699218696681638192} a^{7} - \frac{681356803697185540295607006178603329864}{2139544014062817331228981201168542602387} a^{6} - \frac{4199410628919122074285823026763773824787}{34232704225005077299663699218696681638192} a^{5} - \frac{1973759092396068420068083893013312782057}{34232704225005077299663699218696681638192} a^{4} - \frac{15965559417635662584273540721404655570489}{34232704225005077299663699218696681638192} a^{3} - \frac{3441471774807240528459374722695983222409}{8558176056251269324915924804674170409548} a^{2} - \frac{12569445813188035835114646801906015708097}{34232704225005077299663699218696681638192} a + \frac{10060756555172878995053560925498881027573}{34232704225005077299663699218696681638192}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37235353152.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.46544832151382489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||