Normalized defining polynomial
\( x^{20} - 7 x^{19} + 9 x^{18} + 18 x^{17} + 194 x^{16} - 815 x^{15} - 2303 x^{14} + 11147 x^{13} + 5689 x^{12} - 33639 x^{11} - 119465 x^{10} + 188164 x^{9} + 689018 x^{8} - 1111514 x^{7} - 1004331 x^{6} + 1659063 x^{5} + 1097938 x^{4} - 1061865 x^{3} - 655857 x^{2} + 417007 x - 51613 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9725065664601656707693078997523858169=67^{6}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{41674020283740283165533847888436872091675845401998228176177359} a^{19} + \frac{4298721343380854540402558136750741546225436425909279110685923}{41674020283740283165533847888436872091675845401998228176177359} a^{18} - \frac{5922996456499877003504156992633055057034916032820376297061883}{41674020283740283165533847888436872091675845401998228176177359} a^{17} + \frac{8012239422565227150141938285971777909810379415577246870821368}{41674020283740283165533847888436872091675845401998228176177359} a^{16} - \frac{16064071222547306291553858608887842452809995310692233173182385}{41674020283740283165533847888436872091675845401998228176177359} a^{15} + \frac{5793852711454459213803552084047847809285429115207994220905342}{41674020283740283165533847888436872091675845401998228176177359} a^{14} + \frac{9272084025659943524384980761714074894651757968580858204616384}{41674020283740283165533847888436872091675845401998228176177359} a^{13} - \frac{2875848587193751044358142306518874544289654112915136981883}{13891340094580094388511282629478957363891948467332742725392453} a^{12} - \frac{11105466625180455973661536694751975549963487211302732012794341}{41674020283740283165533847888436872091675845401998228176177359} a^{11} + \frac{12811849188991681995820625740123062871392468537735332840459851}{41674020283740283165533847888436872091675845401998228176177359} a^{10} + \frac{1340878121445848712724047393292345813394108241699288543345749}{13891340094580094388511282629478957363891948467332742725392453} a^{9} - \frac{20661572635013922155685906838234919924596820430751882403442587}{41674020283740283165533847888436872091675845401998228176177359} a^{8} + \frac{4852396448753307435747501850268383258636841380726185181224370}{13891340094580094388511282629478957363891948467332742725392453} a^{7} + \frac{4898686716293620669099109445203176872319132921414566529294909}{13891340094580094388511282629478957363891948467332742725392453} a^{6} - \frac{16036194083438440431818595216368521430602278918124718082958766}{41674020283740283165533847888436872091675845401998228176177359} a^{5} - \frac{1348304229314711746005204246926796664969249321060824866449396}{13891340094580094388511282629478957363891948467332742725392453} a^{4} - \frac{3891984078546043957581950527443851954827020402500174104086241}{13891340094580094388511282629478957363891948467332742725392453} a^{3} - \frac{5056370863084073631261252050547391368724897248076201179461747}{41674020283740283165533847888436872091675845401998228176177359} a^{2} + \frac{4721859292307268227685638537389832460664257375935819356260009}{13891340094580094388511282629478957363891948467332742725392453} a - \frac{2172756147161756988630584551831594613733448001721673138327268}{13891340094580094388511282629478957363891948467332742725392453}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50995979735.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.46544832151382489.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||