Normalized defining polynomial
\( x^{20} - 47 x^{18} - 20 x^{17} + 880 x^{16} + 620 x^{15} - 7588 x^{14} - 12585 x^{13} + 3266 x^{12} + 62063 x^{11} + 150789 x^{10} + 164901 x^{9} + 49942 x^{8} - 41917 x^{7} - 175697 x^{6} - 223475 x^{5} - 193770 x^{4} - 134370 x^{3} - 18264 x^{2} + 1573 x + 169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9725065664601656707693078997523858169=67^{6}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{507755890232042381119761072899533703480743866764108676426781} a^{19} + \frac{5849547551068293015495925942347787634809388143261854047871}{39058145402464798547673928684579515652364912828008359725137} a^{18} + \frac{15667916326741160125116929377432201040444805185520786411481}{507755890232042381119761072899533703480743866764108676426781} a^{17} - \frac{121888900641555017455552483098379261794770372784291681560004}{507755890232042381119761072899533703480743866764108676426781} a^{16} - \frac{105775946793916861902526939691129979363937840181452851281401}{507755890232042381119761072899533703480743866764108676426781} a^{15} - \frac{82379906687436022736247376370256745965284491072467872687831}{507755890232042381119761072899533703480743866764108676426781} a^{14} - \frac{13639682734052880923793962543625119865131316306025566179135}{507755890232042381119761072899533703480743866764108676426781} a^{13} + \frac{56813898295345742564829549151874451802620053743312435029819}{507755890232042381119761072899533703480743866764108676426781} a^{12} - \frac{148284385457091714732834623806863336142025825605727243033184}{507755890232042381119761072899533703480743866764108676426781} a^{11} - \frac{245184673954057057977534823792388256556797132352597322617972}{507755890232042381119761072899533703480743866764108676426781} a^{10} - \frac{148693808150468577092988023612590057555000576809281612227984}{507755890232042381119761072899533703480743866764108676426781} a^{9} + \frac{154682043129223347179761323603881785571056308149287562131933}{507755890232042381119761072899533703480743866764108676426781} a^{8} - \frac{9704603963943662174590232644003904770840119556731864660875}{507755890232042381119761072899533703480743866764108676426781} a^{7} + \frac{192582352725830823362314529954187989227034426954874286722166}{507755890232042381119761072899533703480743866764108676426781} a^{6} + \frac{48366347354144705551190109022289500934955032740234077171677}{507755890232042381119761072899533703480743866764108676426781} a^{5} - \frac{228974856917527553532276131547445261832089864086299833058124}{507755890232042381119761072899533703480743866764108676426781} a^{4} + \frac{99453666197664163124260290477685821185650613250374248520735}{507755890232042381119761072899533703480743866764108676426781} a^{3} + \frac{83058026125229014615695656897912204159289353606164936669066}{507755890232042381119761072899533703480743866764108676426781} a^{2} - \frac{34838963701329140251194345430449620696746841032767347550955}{507755890232042381119761072899533703480743866764108676426781} a + \frac{9325941000606703731361169878201073236157522127910342371701}{39058145402464798547673928684579515652364912828008359725137}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52110842996.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.46544832151382489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||