Normalized defining polynomial
\( x^{20} - 10 x^{19} + 81 x^{18} - 444 x^{17} + 1790 x^{16} - 5548 x^{15} + 9816 x^{14} - 386 x^{13} - 88573 x^{12} + 389660 x^{11} - 1075554 x^{10} + 2168019 x^{9} - 3014685 x^{8} + 2689232 x^{7} - 84219 x^{6} - 3654387 x^{5} + 5576020 x^{4} - 4463930 x^{3} + 383748 x^{2} + 1169369 x - 318393 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9725065664601656707693078997523858169=67^{6}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{3208} a^{16} - \frac{1}{401} a^{15} + \frac{53}{1604} a^{14} - \frac{301}{1604} a^{13} + \frac{15}{3208} a^{12} + \frac{239}{802} a^{11} + \frac{505}{3208} a^{10} - \frac{11}{401} a^{9} - \frac{927}{3208} a^{8} - \frac{108}{401} a^{7} - \frac{687}{1604} a^{6} + \frac{485}{3208} a^{5} + \frac{397}{1604} a^{4} - \frac{819}{3208} a^{3} - \frac{267}{3208} a^{2} - \frac{1121}{3208} a - \frac{1213}{3208}$, $\frac{1}{3208} a^{17} + \frac{21}{1604} a^{15} + \frac{123}{1604} a^{14} + \frac{11}{3208} a^{13} - \frac{66}{401} a^{12} + \frac{133}{3208} a^{11} - \frac{215}{802} a^{10} - \frac{27}{3208} a^{9} - \frac{65}{802} a^{8} - \frac{133}{1604} a^{7} + \frac{721}{3208} a^{6} - \frac{69}{1604} a^{5} + \frac{721}{3208} a^{4} - \frac{403}{3208} a^{3} + \frac{1555}{3208} a^{2} - \frac{557}{3208} a + \frac{381}{802}$, $\frac{1}{6063172068613012803367472} a^{18} - \frac{9}{6063172068613012803367472} a^{17} + \frac{649415853220345636713}{6063172068613012803367472} a^{16} - \frac{1298831706440691273375}{1515793017153253200841868} a^{15} - \frac{116274495940340216819441}{6063172068613012803367472} a^{14} + \frac{904839691033229906871623}{6063172068613012803367472} a^{13} + \frac{15921674311207310453595}{3031586034306506401683736} a^{12} - \frac{64019308512656719790893}{6063172068613012803367472} a^{11} - \frac{82491412150719453668545}{757896508576626600420934} a^{10} - \frac{2223847089770552716814745}{6063172068613012803367472} a^{9} - \frac{104171942800950657149519}{6063172068613012803367472} a^{8} - \frac{775315932843845939469333}{6063172068613012803367472} a^{7} - \frac{686231953109634523359053}{6063172068613012803367472} a^{6} - \frac{1334192700025711506352161}{3031586034306506401683736} a^{5} - \frac{1335179572455866914113313}{3031586034306506401683736} a^{4} + \frac{2881178353514207466492157}{6063172068613012803367472} a^{3} + \frac{5947919849800917164397}{46283756248954296208912} a^{2} - \frac{343564242993674641517681}{3031586034306506401683736} a - \frac{1707816578829785877819043}{6063172068613012803367472}$, $\frac{1}{20681479926038986672286446992} a^{19} + \frac{106}{1292592495377436667017902937} a^{18} - \frac{192268562999626986734899}{1292592495377436667017902937} a^{17} + \frac{1468721851702621210044961}{20681479926038986672286446992} a^{16} - \frac{2216147605892880546721979}{54568548617517115230307248} a^{15} + \frac{870131831835162188867397419}{10340739963019493336143223496} a^{14} - \frac{1387168784947724455170813079}{20681479926038986672286446992} a^{13} - \frac{493838016533356031290145263}{20681479926038986672286446992} a^{12} - \frac{1459291321692172678682427467}{6893826642012995557428815664} a^{11} + \frac{7977799403818153737829421807}{20681479926038986672286446992} a^{10} + \frac{1046139509147035871137703}{12893690726956974234592548} a^{9} - \frac{2257448912876701632125857681}{5170369981509746668071611748} a^{8} + \frac{2985669700301330754483938489}{10340739963019493336143223496} a^{7} + \frac{5152801115907628813236617509}{20681479926038986672286446992} a^{6} - \frac{341411166481161372388726129}{1292592495377436667017902937} a^{5} + \frac{2092864723807062403380195331}{20681479926038986672286446992} a^{4} - \frac{98996500373457732325110253}{1723456660503248889357203916} a^{3} + \frac{2220431155111399656339932761}{20681479926038986672286446992} a^{2} - \frac{3200629375581043876362647701}{20681479926038986672286446992} a + \frac{1093894329459152969832660677}{2297942214004331852476271888}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 231944352729 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.46544832151382489.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||