Properties

Label 20.8.94952935569...0625.2
Degree $20$
Signature $[8, 6]$
Discriminant $5^{14}\cdot 11^{5}\cdot 9931^{5}$
Root discriminant $56.09$
Ramified primes $5, 11, 9931$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1023

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![77411, -139152, -172510, 347098, 92851, -216915, -46928, 16602, 40779, 7101, -381, 3281, -7337, -326, 410, -286, 40, -31, 19, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 19*x^18 - 31*x^17 + 40*x^16 - 286*x^15 + 410*x^14 - 326*x^13 - 7337*x^12 + 3281*x^11 - 381*x^10 + 7101*x^9 + 40779*x^8 + 16602*x^7 - 46928*x^6 - 216915*x^5 + 92851*x^4 + 347098*x^3 - 172510*x^2 - 139152*x + 77411)
 
gp: K = bnfinit(x^20 - 6*x^19 + 19*x^18 - 31*x^17 + 40*x^16 - 286*x^15 + 410*x^14 - 326*x^13 - 7337*x^12 + 3281*x^11 - 381*x^10 + 7101*x^9 + 40779*x^8 + 16602*x^7 - 46928*x^6 - 216915*x^5 + 92851*x^4 + 347098*x^3 - 172510*x^2 - 139152*x + 77411, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 19 x^{18} - 31 x^{17} + 40 x^{16} - 286 x^{15} + 410 x^{14} - 326 x^{13} - 7337 x^{12} + 3281 x^{11} - 381 x^{10} + 7101 x^{9} + 40779 x^{8} + 16602 x^{7} - 46928 x^{6} - 216915 x^{5} + 92851 x^{4} + 347098 x^{3} - 172510 x^{2} - 139152 x + 77411 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(94952935569355941136243902587890625=5^{14}\cdot 11^{5}\cdot 9931^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $56.09$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 9931$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2085863228620200181373718132917563929866568844734691999823} a^{19} + \frac{890531469824810596513602287459426439933386136545465713860}{2085863228620200181373718132917563929866568844734691999823} a^{18} + \frac{5119818652248871136420368535132486020490071990499752943}{2085863228620200181373718132917563929866568844734691999823} a^{17} + \frac{1026752665749908305521064848738954568385674900910136606054}{2085863228620200181373718132917563929866568844734691999823} a^{16} + \frac{33429508505080540839421881999966948244860148353758779412}{2085863228620200181373718132917563929866568844734691999823} a^{15} - \frac{928897178213710888818214821950852669667819637646464524084}{2085863228620200181373718132917563929866568844734691999823} a^{14} - \frac{454461456843182797327007366810586293959063055679312278928}{2085863228620200181373718132917563929866568844734691999823} a^{13} + \frac{967431826048876410022833349659793919394652012278605906312}{2085863228620200181373718132917563929866568844734691999823} a^{12} + \frac{825237292297393462019561731076635781508490853659171304716}{2085863228620200181373718132917563929866568844734691999823} a^{11} - \frac{330531355079032220153664941323730002839764330804687072086}{2085863228620200181373718132917563929866568844734691999823} a^{10} - \frac{768466061211554183975560061284148721524163162405254686095}{2085863228620200181373718132917563929866568844734691999823} a^{9} - \frac{359134062613499500271147361372022490012146194084905879735}{2085863228620200181373718132917563929866568844734691999823} a^{8} + \frac{951623582802592049069509448460772151513683076984098579039}{2085863228620200181373718132917563929866568844734691999823} a^{7} + \frac{600907945492935649616225224336362400073859435101013033800}{2085863228620200181373718132917563929866568844734691999823} a^{6} + \frac{785105411544429723541151774616814517408370066991651326744}{2085863228620200181373718132917563929866568844734691999823} a^{5} - \frac{768226509443210477302327674577985311795033506808619135532}{2085863228620200181373718132917563929866568844734691999823} a^{4} - \frac{522949426656426490995549185242365719689717181866303023818}{2085863228620200181373718132917563929866568844734691999823} a^{3} + \frac{939152082962218660967936348621381889520676346735585827629}{2085863228620200181373718132917563929866568844734691999823} a^{2} + \frac{671090227277699947402141855392377945841582670976583856942}{2085863228620200181373718132917563929866568844734691999823} a - \frac{290955343187668151740848574562949831749185943463538869137}{2085863228620200181373718132917563929866568844734691999823}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8666325568.83 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1023:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 324 conjugacy class representatives for t20n1023 are not computed
Character table for t20n1023 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.932312193828125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ $20$ R $20$ R $20$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$
$11$11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.10.0.1$x^{10} + x^{2} - x + 6$$1$$10$$0$$C_{10}$$[\ ]^{10}$
9931Data not computed