Normalized defining polynomial
\( x^{20} - 12 x^{18} + 2 x^{16} - 32 x^{15} + 192 x^{14} + 16 x^{13} - 164 x^{12} + 224 x^{11} - 608 x^{10} - 352 x^{9} + 376 x^{8} - 128 x^{7} + 832 x^{6} + 480 x^{5} - 4 x^{4} - 752 x^{2} - 256 x - 8 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9223372036854775808000000000000=2^{75}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{16}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{248} a^{18} + \frac{1}{62} a^{17} - \frac{3}{124} a^{16} - \frac{1}{124} a^{15} - \frac{1}{31} a^{14} + \frac{9}{124} a^{13} - \frac{7}{62} a^{12} - \frac{7}{62} a^{11} - \frac{29}{124} a^{10} + \frac{3}{31} a^{9} - \frac{7}{31} a^{8} + \frac{13}{62} a^{7} + \frac{7}{62} a^{6} + \frac{21}{62} a^{5} - \frac{13}{31} a^{4} - \frac{4}{31} a^{3} + \frac{5}{31} a^{2} - \frac{2}{31} a + \frac{3}{31}$, $\frac{1}{74719404606866736248} a^{19} + \frac{16083383374658357}{74719404606866736248} a^{18} - \frac{1697182405312060055}{37359702303433368124} a^{17} + \frac{2043830702909075475}{18679851151716684062} a^{16} + \frac{433429825776616315}{18679851151716684062} a^{15} + \frac{2228605183524436951}{37359702303433368124} a^{14} + \frac{1510707095378863503}{18679851151716684062} a^{13} - \frac{1986010243653319855}{18679851151716684062} a^{12} - \frac{115440606725642787}{37359702303433368124} a^{11} + \frac{8418422833873387921}{37359702303433368124} a^{10} - \frac{118739667076543170}{1334275082265477433} a^{9} + \frac{1523800574527083375}{9339925575858342031} a^{8} - \frac{5928744225806337171}{18679851151716684062} a^{7} + \frac{509805530238982451}{1334275082265477433} a^{6} - \frac{20825860731145961}{9339925575858342031} a^{5} - \frac{957653288000935062}{9339925575858342031} a^{4} + \frac{251633197742527186}{1334275082265477433} a^{3} + \frac{568331523973135620}{1334275082265477433} a^{2} + \frac{596265177158700249}{9339925575858342031} a + \frac{3352726666744107853}{9339925575858342031}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 329987043.074 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n654 are not computed |
| Character table for t20n654 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 10.4.67108864000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $20$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||