Properties

Label 20.8.90154442119...7168.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{46}\cdot 457\cdot 809^{6}$
Root discriminant $49.86$
Ramified primes $2, 457, 809$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T955

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -36, 80, 248, -145, -632, -324, 136, 252, 96, 56, 136, 8, 0, -52, -8, -9, -4, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^17 - 9*x^16 - 8*x^15 - 52*x^14 + 8*x^12 + 136*x^11 + 56*x^10 + 96*x^9 + 252*x^8 + 136*x^7 - 324*x^6 - 632*x^5 - 145*x^4 + 248*x^3 + 80*x^2 - 36*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^17 - 9*x^16 - 8*x^15 - 52*x^14 + 8*x^12 + 136*x^11 + 56*x^10 + 96*x^9 + 252*x^8 + 136*x^7 - 324*x^6 - 632*x^5 - 145*x^4 + 248*x^3 + 80*x^2 - 36*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{17} - 9 x^{16} - 8 x^{15} - 52 x^{14} + 8 x^{12} + 136 x^{11} + 56 x^{10} + 96 x^{9} + 252 x^{8} + 136 x^{7} - 324 x^{6} - 632 x^{5} - 145 x^{4} + 248 x^{3} + 80 x^{2} - 36 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9015444211941674311316942689927168=2^{46}\cdot 457\cdot 809^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 457, 809$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{164899515851800193732} a^{19} - \frac{19914013055240310373}{164899515851800193732} a^{18} - \frac{17852422958546042309}{164899515851800193732} a^{17} - \frac{34412776186524535351}{164899515851800193732} a^{16} + \frac{4749659231676328906}{41224878962950048433} a^{15} + \frac{19349093116246815419}{82449757925900096866} a^{14} + \frac{9020837069689709051}{41224878962950048433} a^{13} + \frac{14563388063758343953}{82449757925900096866} a^{12} - \frac{3089050493825255572}{41224878962950048433} a^{11} + \frac{3839463511655614479}{41224878962950048433} a^{10} - \frac{31713666636814594575}{82449757925900096866} a^{9} + \frac{19960202234069372681}{82449757925900096866} a^{8} - \frac{14272540050565541100}{41224878962950048433} a^{7} + \frac{12889064382778270037}{82449757925900096866} a^{6} + \frac{17452157460946490519}{41224878962950048433} a^{5} + \frac{8891451484233186493}{82449757925900096866} a^{4} + \frac{8503755907016466475}{164899515851800193732} a^{3} + \frac{63732513698269254953}{164899515851800193732} a^{2} - \frac{37685292353831552413}{164899515851800193732} a - \frac{18904977207878943915}{164899515851800193732}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6060248256.11 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T955:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 819200
The 275 conjugacy class representatives for t20n955 are not computed
Character table for t20n955 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 10.10.277597456433152.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
457Data not computed
809Data not computed