Normalized defining polynomial
\( x^{20} - 4 x^{19} - 2 x^{18} + 36 x^{17} - 24 x^{16} - 210 x^{15} + 330 x^{14} + 154 x^{13} - 917 x^{12} + 1422 x^{11} - 1392 x^{10} - 334 x^{9} + 2364 x^{8} - 2062 x^{7} + 1742 x^{6} - 1396 x^{5} + 385 x^{4} + 98 x^{3} - 48 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(890131328852948728120237621248=2^{26}\cdot 3^{3}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1128} a^{18} - \frac{31}{564} a^{17} - \frac{151}{1128} a^{16} - \frac{17}{47} a^{15} + \frac{319}{1128} a^{14} - \frac{2}{141} a^{13} + \frac{9}{376} a^{12} - \frac{37}{282} a^{11} + \frac{22}{141} a^{10} - \frac{239}{564} a^{9} + \frac{5}{282} a^{8} - \frac{49}{141} a^{7} - \frac{7}{47} a^{6} + \frac{149}{564} a^{5} - \frac{7}{564} a^{4} + \frac{21}{188} a^{3} + \frac{129}{376} a^{2} - \frac{77}{564} a + \frac{25}{1128}$, $\frac{1}{826967170729638680332121472} a^{19} + \frac{101497597610936330838701}{275655723576546226777373824} a^{18} + \frac{1981273677041405520615691}{826967170729638680332121472} a^{17} + \frac{183398334838370382576913309}{826967170729638680332121472} a^{16} - \frac{108464255818035714471876377}{826967170729638680332121472} a^{15} + \frac{314617523360889985476775195}{826967170729638680332121472} a^{14} + \frac{397753352302510927424874163}{826967170729638680332121472} a^{13} + \frac{121657976622933036917546315}{826967170729638680332121472} a^{12} - \frac{25459838760853622548950957}{68913930894136556694343456} a^{11} - \frac{45448359180666035813261809}{137827861788273113388686912} a^{10} + \frac{42065934275374206221212797}{137827861788273113388686912} a^{9} + \frac{49340184127914290637123707}{206741792682409670083030368} a^{8} - \frac{1096041399492187358147921}{25842724085301208760378796} a^{7} - \frac{35262243176817258482676151}{413483585364819340166060736} a^{6} + \frac{30128598756915228726683031}{68913930894136556694343456} a^{5} - \frac{46646490260000676396072659}{103370896341204835041515184} a^{4} + \frac{58662831696754023607451475}{275655723576546226777373824} a^{3} + \frac{187143562572043809869341205}{826967170729638680332121472} a^{2} + \frac{297759736205310193986953591}{826967170729638680332121472} a + \frac{97886402574753746567623709}{826967170729638680332121472}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 84173488.483 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2382032.1, 10.8.272355669553152.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $53$ | 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |