Normalized defining polynomial
\( x^{20} - 6 x^{19} - 10 x^{18} + 148 x^{17} - 328 x^{16} - 181 x^{15} + 1552 x^{14} - 4533 x^{13} + 21371 x^{12} - 77067 x^{11} + 201241 x^{10} - 259877 x^{9} + 100553 x^{8} + 192890 x^{7} - 593182 x^{6} + 323353 x^{5} + 75862 x^{4} - 244524 x^{3} + 336328 x^{2} - 134880 x + 288 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88328352388962506007847515655488512=2^{10}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{15} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{16} + \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{10} + \frac{3}{8} a^{9} + \frac{3}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{101212609193791578148116656414172529801887037084266586059290160} a^{19} + \frac{538347710657493451209572964798335132225847662481278641502307}{16868768198965263024686109402362088300314506180711097676548360} a^{18} - \frac{1827038321859340412506172194552877132169434119544712143527847}{50606304596895789074058328207086264900943518542133293029645080} a^{17} + \frac{2816800872716869426101301956627230134983583545359516801416099}{25303152298447894537029164103543132450471759271066646514822540} a^{16} - \frac{185392331038859430749751543071668371498217363654366524299948}{1265157614922394726851458205177156622523587963553332325741127} a^{15} - \frac{24761667169659045391860627457237481443467896944609049170651861}{101212609193791578148116656414172529801887037084266586059290160} a^{14} - \frac{5883632147095573423331656853208349482155233562714623875174907}{12651576149223947268514582051771566225235879635533323257411270} a^{13} - \frac{15961166666169539973060398114084006958954234806163040623115467}{33737536397930526049372218804724176600629012361422195353096720} a^{12} - \frac{44170858467266840798849611218461632317050458810738047153559357}{101212609193791578148116656414172529801887037084266586059290160} a^{11} + \frac{7337846318685119896251294599777045147362603334030891417669179}{33737536397930526049372218804724176600629012361422195353096720} a^{10} - \frac{24277498839881226683047588862207589059995234426853007974108123}{101212609193791578148116656414172529801887037084266586059290160} a^{9} - \frac{35319028609157628763833733265480306666971473734814962875846961}{101212609193791578148116656414172529801887037084266586059290160} a^{8} - \frac{1281279864442407174663357758814811764445658337487501567537223}{20242521838758315629623331282834505960377407416853317211858032} a^{7} - \frac{1938917373845672576091283451586374680810942258752903243211705}{10121260919379157814811665641417252980188703708426658605929016} a^{6} + \frac{6509781131939121191259246114018697688767688717266109806096159}{50606304596895789074058328207086264900943518542133293029645080} a^{5} - \frac{46939266392566699329384593765114105385512326589064757664604863}{101212609193791578148116656414172529801887037084266586059290160} a^{4} + \frac{15945453633745468747713787305010078689341959700462382277439459}{50606304596895789074058328207086264900943518542133293029645080} a^{3} + \frac{97932038467519980056512465159121835971179896107631131062050}{421719204974131575617152735059052207507862654517777441913709} a^{2} + \frac{1387925862450896233370876679254462570091049977366893458707073}{6325788074611973634257291025885783112617939817766661628705635} a + \frac{297943511564275601899613260730254391000325588634358270283808}{2108596024870657878085763675295261037539313272588887209568545}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13562957053.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.48615135735473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 36497 | Data not computed | ||||||