Normalized defining polynomial
\( x^{20} - 5 x^{19} - 4 x^{18} + 54 x^{17} - 49 x^{16} + 25 x^{15} - 939 x^{14} - 2171 x^{13} + 17218 x^{12} + 4450 x^{11} - 137307 x^{10} + 139986 x^{9} + 554228 x^{8} - 949385 x^{7} - 792278 x^{6} + 2024396 x^{5} + 97179 x^{4} - 1629590 x^{3} + 460445 x^{2} + 305984 x - 94889 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88328352388962506007847515655488512=2^{10}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{290821522535186123604571506228484826099927622478226547603087397} a^{19} + \frac{78791940368096713998128026293056324029631405940895422787549813}{290821522535186123604571506228484826099927622478226547603087397} a^{18} + \frac{57776023394123952024491406254916898361630462986085059426706188}{290821522535186123604571506228484826099927622478226547603087397} a^{17} + \frac{15267444674373214218215687162784005421036000595616247226605351}{290821522535186123604571506228484826099927622478226547603087397} a^{16} - \frac{12018983848398476052431530036938495287421751887375507831290761}{290821522535186123604571506228484826099927622478226547603087397} a^{15} - \frac{108154617914066710321064011938960550124124206701146894694584203}{290821522535186123604571506228484826099927622478226547603087397} a^{14} - \frac{1724610141492280268506770850987268209309158635008663421377695}{9381339436618907213050693749305962132255729757362146696873787} a^{13} + \frac{31331975213435633227735468143492911570951142141256279168212593}{290821522535186123604571506228484826099927622478226547603087397} a^{12} + \frac{54438154214714174345182544798340936605857161729101932221777579}{290821522535186123604571506228484826099927622478226547603087397} a^{11} + \frac{79184700154906544601845391011594558347806941112306537793186338}{290821522535186123604571506228484826099927622478226547603087397} a^{10} + \frac{120798568162562902158465346546226394282891293400961879697017883}{290821522535186123604571506228484826099927622478226547603087397} a^{9} + \frac{121706747764036144286308039132766488248575267384174108996841888}{290821522535186123604571506228484826099927622478226547603087397} a^{8} - \frac{17271084631749835997576063545449368753482564026411930294177343}{290821522535186123604571506228484826099927622478226547603087397} a^{7} + \frac{44101642840985120113112761514662695598279540168228992141901688}{290821522535186123604571506228484826099927622478226547603087397} a^{6} + \frac{35815476583206914261676332544658017957100583446618562492740412}{290821522535186123604571506228484826099927622478226547603087397} a^{5} + \frac{112996787399711273071645780252606548902639263471347837879131937}{290821522535186123604571506228484826099927622478226547603087397} a^{4} + \frac{75251088421031997240294542279551750373751386001022110069292333}{290821522535186123604571506228484826099927622478226547603087397} a^{3} + \frac{139904824245288209047536729139385460542403470015227934257250183}{290821522535186123604571506228484826099927622478226547603087397} a^{2} - \frac{88442710166729213588229213700475819120026608541657786847527199}{290821522535186123604571506228484826099927622478226547603087397} a - \frac{122675852272844372516820322702986216477562753694078158757392080}{290821522535186123604571506228484826099927622478226547603087397}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6891603109.32 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.48615135735473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 36497 | Data not computed | ||||||