Normalized defining polynomial
\( x^{20} - 9 x^{19} + 14 x^{18} + 137 x^{17} - 688 x^{16} + 41 x^{15} + 9718 x^{14} - 39145 x^{13} + 72985 x^{12} - 42593 x^{11} - 113630 x^{10} + 305710 x^{9} - 295677 x^{8} - 20188 x^{7} + 374989 x^{6} - 372623 x^{5} + 57747 x^{4} + 123718 x^{3} - 42509 x^{2} - 23700 x - 1579 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87698172752380894993330638209814721=13^{8}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{7554964775347090728798236653445800297230755996588961} a^{19} - \frac{674388817236140083590253341630710638323596314992835}{7554964775347090728798236653445800297230755996588961} a^{18} - \frac{358330806129492490029355830594181111273228288959434}{2518321591782363576266078884481933432410251998862987} a^{17} - \frac{3745238674720896865018113379676651536186651161267934}{7554964775347090728798236653445800297230755996588961} a^{16} + \frac{41247147859591462273581197393874742713073381369901}{2518321591782363576266078884481933432410251998862987} a^{15} - \frac{512603317833580134842645185422326748549284298467839}{7554964775347090728798236653445800297230755996588961} a^{14} + \frac{2260301147144595061918569017516044841291669910731705}{7554964775347090728798236653445800297230755996588961} a^{13} - \frac{814314582798779537170887797493236916000063206558795}{2518321591782363576266078884481933432410251998862987} a^{12} - \frac{3241835337111012996620501343094502428296004811513147}{7554964775347090728798236653445800297230755996588961} a^{11} - \frac{279591030664610377819620395528382552971472344355152}{2518321591782363576266078884481933432410251998862987} a^{10} - \frac{1167246371970866068572260432895110368676007976114931}{7554964775347090728798236653445800297230755996588961} a^{9} + \frac{1125128595155558290225469430762461637603404666157701}{2518321591782363576266078884481933432410251998862987} a^{8} - \frac{801049717083502844426475152642701792231831655394703}{2518321591782363576266078884481933432410251998862987} a^{7} - \frac{1695601977790688606360297632369196852830231165988266}{7554964775347090728798236653445800297230755996588961} a^{6} - \frac{3201236052841669761458708979876653372570430098129395}{7554964775347090728798236653445800297230755996588961} a^{5} + \frac{3764157619534660630416179411574268147545344339518928}{7554964775347090728798236653445800297230755996588961} a^{4} - \frac{1808746671247334378086634015885085337665762397795151}{7554964775347090728798236653445800297230755996588961} a^{3} + \frac{22541103461263734417190975320313744228625961457303}{2518321591782363576266078884481933432410251998862987} a^{2} + \frac{2286093197808866300892437204209944595793092063133956}{7554964775347090728798236653445800297230755996588961} a - \frac{3035696512989019187221130799669567107779601731245421}{7554964775347090728798236653445800297230755996588961}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5088443931.77 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.1752300430738169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||