Normalized defining polynomial
\( x^{20} - 23 x^{18} - 15 x^{17} + 162 x^{16} + 259 x^{15} - 178 x^{14} - 867 x^{13} - 1054 x^{12} + 696 x^{11} + 2098 x^{10} - 5646 x^{9} - 12475 x^{8} + 4624 x^{7} + 15907 x^{6} - 7283 x^{5} - 9771 x^{4} + 14470 x^{3} + 12325 x^{2} - 310 x - 1045 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(85263528582144256599415283203125=3^{8}\cdot 5^{13}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{15} + \frac{2}{25} a^{14} - \frac{7}{25} a^{13} + \frac{2}{25} a^{12} - \frac{12}{25} a^{11} + \frac{7}{25} a^{10} - \frac{2}{25} a^{9} - \frac{4}{25} a^{8} + \frac{12}{25} a^{7} + \frac{1}{5} a^{6} - \frac{12}{25} a^{5} - \frac{11}{25} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{15} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{6}{25} a^{9} - \frac{7}{25} a^{8} + \frac{2}{25} a^{7} + \frac{8}{25} a^{6} + \frac{7}{25} a^{5} + \frac{4}{25} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{125} a^{18} + \frac{2}{125} a^{17} - \frac{2}{125} a^{15} + \frac{8}{125} a^{14} - \frac{13}{125} a^{13} + \frac{23}{125} a^{12} - \frac{18}{125} a^{11} + \frac{47}{125} a^{10} - \frac{2}{125} a^{9} + \frac{62}{125} a^{8} + \frac{3}{25} a^{7} + \frac{8}{125} a^{6} - \frac{2}{5} a^{5} + \frac{9}{125} a^{4} + \frac{7}{25} a^{3} + \frac{4}{25} a^{2} + \frac{2}{5} a + \frac{11}{25}$, $\frac{1}{7318482522245677991799280853702881625} a^{19} - \frac{3772769776029506781492679729257018}{7318482522245677991799280853702881625} a^{18} + \frac{9755909106116893651628327489269436}{1463696504449135598359856170740576325} a^{17} + \frac{43645874266997423210344943287619413}{7318482522245677991799280853702881625} a^{16} - \frac{531738124847337324133080670842728997}{7318482522245677991799280853702881625} a^{15} - \frac{91874042478905030633362515667794943}{7318482522245677991799280853702881625} a^{14} - \frac{585584610817929157458312582660605297}{7318482522245677991799280853702881625} a^{13} - \frac{3613724338553330711719096716032962973}{7318482522245677991799280853702881625} a^{12} - \frac{1914968683153757174752453885367194498}{7318482522245677991799280853702881625} a^{11} - \frac{3363364356836613970193254861690158187}{7318482522245677991799280853702881625} a^{10} - \frac{1212870237279268439710570441167972998}{7318482522245677991799280853702881625} a^{9} + \frac{1418610719070737556529280320270444}{58547860177965423934394246829623053} a^{8} + \frac{1126322917179209374704425328995023953}{7318482522245677991799280853702881625} a^{7} + \frac{51270500387863438904897359511250806}{292739300889827119671971234148115265} a^{6} - \frac{3214367300898741709481507989820241206}{7318482522245677991799280853702881625} a^{5} - \frac{696486551655161772709566299216608491}{1463696504449135598359856170740576325} a^{4} + \frac{520868317460139345207999150875676594}{1463696504449135598359856170740576325} a^{3} - \frac{120997272856332924503523035171203562}{292739300889827119671971234148115265} a^{2} + \frac{720431886334523221987485317058836176}{1463696504449135598359856170740576325} a - \frac{73372162340746577242686245149008992}{292739300889827119671971234148115265}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 200390600.563 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n144 |
| Character table for t20n144 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||