Normalized defining polynomial
\( x^{20} - 4 x^{19} - 9 x^{18} + 60 x^{17} + 26 x^{16} - 321 x^{15} - 223 x^{14} + 614 x^{13} + 1982 x^{12} + 681 x^{11} - 9262 x^{10} - 14732 x^{9} + 5610 x^{8} + 57138 x^{7} + 81093 x^{6} - 47073 x^{5} - 187816 x^{4} - 68040 x^{3} + 93770 x^{2} + 48025 x - 995 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(85263528582144256599415283203125=3^{8}\cdot 5^{13}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{55} a^{17} - \frac{3}{55} a^{16} + \frac{3}{11} a^{15} - \frac{21}{55} a^{14} + \frac{4}{55} a^{13} - \frac{9}{55} a^{12} + \frac{26}{55} a^{11} + \frac{18}{55} a^{10} + \frac{21}{55} a^{9} - \frac{16}{55} a^{8} + \frac{6}{55} a^{7} + \frac{3}{11} a^{6} + \frac{2}{11} a^{5} - \frac{12}{55} a^{4} - \frac{2}{11} a^{3} - \frac{3}{11} a^{2} + \frac{5}{11} a - \frac{3}{11}$, $\frac{1}{55} a^{18} - \frac{1}{11} a^{16} + \frac{24}{55} a^{15} - \frac{4}{55} a^{14} + \frac{14}{55} a^{13} - \frac{12}{55} a^{12} - \frac{3}{55} a^{11} - \frac{13}{55} a^{10} + \frac{5}{11} a^{9} - \frac{9}{55} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{3}{11} a^{5} + \frac{4}{11} a^{4} + \frac{2}{11} a^{3} - \frac{4}{11} a^{2} + \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{10131996223261146770307865485796983816234550355} a^{19} + \frac{5721627603703390413383098928983904126282909}{2026399244652229354061573097159396763246910071} a^{18} + \frac{11690138251459252966801114024163218399990583}{2026399244652229354061573097159396763246910071} a^{17} - \frac{195143309623194061841564685617709259114712566}{10131996223261146770307865485796983816234550355} a^{16} + \frac{3910788054638614081350349225989766662066491746}{10131996223261146770307865485796983816234550355} a^{15} - \frac{2507947734426586291494778682662486077523966}{6099937521529889687120930455025276228919055} a^{14} - \frac{403503725053685604670953236619562052143055727}{921090565751013342755260498708816710566777305} a^{13} + \frac{4143177901389938871690840147316985807543562412}{10131996223261146770307865485796983816234550355} a^{12} - \frac{2628130182468883419235286604696340143561032643}{10131996223261146770307865485796983816234550355} a^{11} + \frac{406550648251946958516829362382958531852595190}{2026399244652229354061573097159396763246910071} a^{10} + \frac{4369274968560535354866579057289735922312017776}{10131996223261146770307865485796983816234550355} a^{9} + \frac{2035810306890368384387136228329431966371537283}{10131996223261146770307865485796983816234550355} a^{8} - \frac{4070957307061764488112877213882614850347307691}{10131996223261146770307865485796983816234550355} a^{7} + \frac{65939982018879204178511757855901524835171695}{2026399244652229354061573097159396763246910071} a^{6} - \frac{432738626043755636436412889913970558335792087}{2026399244652229354061573097159396763246910071} a^{5} + \frac{468330896896656072876989575643892177683456034}{2026399244652229354061573097159396763246910071} a^{4} + \frac{350099371958326820470183801192221983726953720}{2026399244652229354061573097159396763246910071} a^{3} + \frac{848005128424800183537323395614389973027164283}{2026399244652229354061573097159396763246910071} a^{2} + \frac{417973802885730988222603267087466339095950974}{2026399244652229354061573097159396763246910071} a + \frac{913694827880924548371362448384217144555450000}{2026399244652229354061573097159396763246910071}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101246878.147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n144 |
| Character table for t20n144 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||