Normalized defining polynomial
\( x^{20} - 2 x^{19} - 4 x^{18} + 20 x^{17} - 54 x^{16} + 69 x^{15} - 31 x^{14} - 59 x^{13} + 99 x^{12} - 92 x^{11} - 33 x^{10} + 92 x^{9} + 99 x^{8} + 59 x^{7} - 31 x^{6} - 69 x^{5} - 54 x^{4} - 20 x^{3} - 4 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(829697758962352789931640625=5^{10}\cdot 11^{16}\cdot 43^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{989} a^{16} + \frac{94}{989} a^{15} + \frac{175}{989} a^{14} + \frac{10}{43} a^{13} + \frac{54}{989} a^{12} + \frac{250}{989} a^{11} - \frac{9}{43} a^{10} - \frac{466}{989} a^{9} - \frac{174}{989} a^{8} + \frac{466}{989} a^{7} - \frac{9}{43} a^{6} - \frac{250}{989} a^{5} + \frac{54}{989} a^{4} - \frac{10}{43} a^{3} + \frac{175}{989} a^{2} - \frac{94}{989} a + \frac{1}{989}$, $\frac{1}{989} a^{17} + \frac{240}{989} a^{15} - \frac{396}{989} a^{14} + \frac{192}{989} a^{13} + \frac{119}{989} a^{12} + \frac{29}{989} a^{11} + \frac{201}{989} a^{10} + \frac{114}{989} a^{9} + \frac{9}{989} a^{8} + \frac{494}{989} a^{7} + \frac{417}{989} a^{6} - \frac{182}{989} a^{5} - \frac{361}{989} a^{4} + \frac{37}{989} a^{3} + \frac{269}{989} a^{2} - \frac{64}{989} a - \frac{94}{989}$, $\frac{1}{107801} a^{18} + \frac{47}{107801} a^{17} + \frac{11}{107801} a^{16} - \frac{21521}{107801} a^{15} + \frac{31504}{107801} a^{14} + \frac{35593}{107801} a^{13} - \frac{45315}{107801} a^{12} + \frac{10577}{107801} a^{11} - \frac{45892}{107801} a^{10} - \frac{28357}{107801} a^{9} - \frac{39346}{107801} a^{8} - \frac{39563}{107801} a^{7} - \frac{44937}{107801} a^{6} - \frac{44631}{107801} a^{5} + \frac{21143}{107801} a^{4} + \frac{53689}{107801} a^{3} + \frac{15031}{107801} a^{2} - \frac{30037}{107801} a - \frac{50141}{107801}$, $\frac{1}{21236797} a^{19} + \frac{12}{21236797} a^{18} - \frac{2397}{21236797} a^{17} - \frac{3594}{21236797} a^{16} + \frac{3185355}{21236797} a^{15} - \frac{3381553}{21236797} a^{14} + \frac{1372781}{21236797} a^{13} + \frac{6806693}{21236797} a^{12} + \frac{1983766}{21236797} a^{11} - \frac{7217129}{21236797} a^{10} + \frac{8179522}{21236797} a^{9} - \frac{22991}{21236797} a^{8} + \frac{1087760}{21236797} a^{7} - \frac{8401845}{21236797} a^{6} + \frac{378124}{21236797} a^{5} - \frac{1685846}{21236797} a^{4} + \frac{1765398}{21236797} a^{3} - \frac{8444670}{21236797} a^{2} + \frac{8922947}{21236797} a - \frac{8396126}{21236797}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 766699.913561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T86):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.4.28804474634375.1, 10.10.669871503125.1, 10.4.9217431883.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |