Properties

Label 20.8.82306730226...1609.6
Degree $20$
Signature $[8, 6]$
Discriminant $11^{18}\cdot 23^{6}$
Root discriminant $22.17$
Ramified primes $11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T314

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 11, -83, 110, 234, -715, 620, -253, 20, 792, -1770, 1408, -204, -242, 14, 55, 26, -22, -2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^18 - 22*x^17 + 26*x^16 + 55*x^15 + 14*x^14 - 242*x^13 - 204*x^12 + 1408*x^11 - 1770*x^10 + 792*x^9 + 20*x^8 - 253*x^7 + 620*x^6 - 715*x^5 + 234*x^4 + 110*x^3 - 83*x^2 + 11*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^18 - 22*x^17 + 26*x^16 + 55*x^15 + 14*x^14 - 242*x^13 - 204*x^12 + 1408*x^11 - 1770*x^10 + 792*x^9 + 20*x^8 - 253*x^7 + 620*x^6 - 715*x^5 + 234*x^4 + 110*x^3 - 83*x^2 + 11*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{18} - 22 x^{17} + 26 x^{16} + 55 x^{15} + 14 x^{14} - 242 x^{13} - 204 x^{12} + 1408 x^{11} - 1770 x^{10} + 792 x^{9} + 20 x^{8} - 253 x^{7} + 620 x^{6} - 715 x^{5} + 234 x^{4} + 110 x^{3} - 83 x^{2} + 11 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(823067302269314181883621609=11^{18}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{1}{23} a^{17} - \frac{7}{23} a^{16} - \frac{9}{23} a^{15} + \frac{8}{23} a^{14} + \frac{9}{23} a^{13} + \frac{3}{23} a^{12} + \frac{8}{23} a^{10} - \frac{3}{23} a^{9} + \frac{2}{23} a^{8} + \frac{3}{23} a^{7} + \frac{5}{23} a^{6} - \frac{8}{23} a^{4} + \frac{6}{23} a^{3} + \frac{5}{23} a + \frac{4}{23}$, $\frac{1}{124296619459642962289} a^{19} + \frac{1432627371517011403}{124296619459642962289} a^{18} - \frac{20587470815516056900}{124296619459642962289} a^{17} + \frac{42618091245911450448}{124296619459642962289} a^{16} + \frac{47317395282185156706}{124296619459642962289} a^{15} + \frac{60344088355719651570}{124296619459642962289} a^{14} - \frac{52412432614271299717}{124296619459642962289} a^{13} - \frac{2450109395253464322}{5404200846071433143} a^{12} + \frac{39238042708958592320}{124296619459642962289} a^{11} + \frac{38267875930236188810}{124296619459642962289} a^{10} - \frac{57398356230758530337}{124296619459642962289} a^{9} - \frac{454712081256845956}{2890619057200999123} a^{8} - \frac{40172206028606701083}{124296619459642962289} a^{7} + \frac{2551740120921295035}{5404200846071433143} a^{6} - \frac{45275648973891462465}{124296619459642962289} a^{5} - \frac{26615568196339432261}{124296619459642962289} a^{4} + \frac{2404953168864670135}{5404200846071433143} a^{3} + \frac{16502891966098357182}{124296619459642962289} a^{2} + \frac{51692025659339428195}{124296619459642962289} a - \frac{1686993878971192460}{5404200846071433143}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 814961.958681 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T314:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 44 conjugacy class representatives for t20n314
Character table for t20n314 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.8.1247354328539.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$