Properties

Label 20.8.823...609.1
Degree $20$
Signature $[8, 6]$
Discriminant $8.231\times 10^{26}$
Root discriminant \(22.17\)
Ramified primes $11,23$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\wr C_5$ (as 20T40)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1)
 
gp: K = bnfinit(y^20 - 3*y^19 - 3*y^18 + 12*y^17 - 33*y^16 + 32*y^15 + 124*y^14 - 63*y^13 + 10*y^12 - 187*y^11 - 428*y^10 - 550*y^9 - 661*y^8 - 184*y^7 - 129*y^6 + 43*y^5 + 23*y^3 + 63*y^2 + 19*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1)
 

\( x^{20} - 3 x^{19} - 3 x^{18} + 12 x^{17} - 33 x^{16} + 32 x^{15} + 124 x^{14} - 63 x^{13} + 10 x^{12} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(823067302269314181883621609\) \(\medspace = 11^{18}\cdot 23^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.17\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}23^{1/2}\approx 41.50661671665305$
Ramified primes:   \(11\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{28\!\cdots\!51}a^{19}-\frac{13\!\cdots\!31}{28\!\cdots\!51}a^{18}+\frac{11\!\cdots\!16}{28\!\cdots\!51}a^{17}-\frac{59\!\cdots\!93}{28\!\cdots\!51}a^{16}+\frac{95\!\cdots\!68}{28\!\cdots\!51}a^{15}+\frac{35\!\cdots\!64}{28\!\cdots\!51}a^{14}+\frac{95\!\cdots\!28}{28\!\cdots\!51}a^{13}-\frac{26\!\cdots\!30}{28\!\cdots\!51}a^{12}+\frac{27\!\cdots\!83}{28\!\cdots\!51}a^{11}+\frac{13\!\cdots\!56}{28\!\cdots\!51}a^{10}+\frac{12\!\cdots\!04}{28\!\cdots\!51}a^{9}+\frac{14\!\cdots\!56}{28\!\cdots\!51}a^{8}-\frac{12\!\cdots\!05}{28\!\cdots\!51}a^{7}-\frac{65\!\cdots\!11}{28\!\cdots\!51}a^{6}-\frac{25\!\cdots\!10}{28\!\cdots\!51}a^{5}-\frac{13\!\cdots\!28}{28\!\cdots\!51}a^{4}-\frac{78\!\cdots\!68}{28\!\cdots\!51}a^{3}+\frac{58\!\cdots\!54}{28\!\cdots\!51}a^{2}+\frac{39\!\cdots\!74}{28\!\cdots\!51}a+\frac{34\!\cdots\!48}{28\!\cdots\!51}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{35\!\cdots\!20}{28\!\cdots\!51}a^{19}-\frac{11\!\cdots\!71}{28\!\cdots\!51}a^{18}-\frac{63\!\cdots\!77}{28\!\cdots\!51}a^{17}+\frac{44\!\cdots\!47}{28\!\cdots\!51}a^{16}-\frac{13\!\cdots\!37}{28\!\cdots\!51}a^{15}+\frac{15\!\cdots\!97}{28\!\cdots\!51}a^{14}+\frac{38\!\cdots\!90}{28\!\cdots\!51}a^{13}-\frac{36\!\cdots\!96}{28\!\cdots\!51}a^{12}+\frac{16\!\cdots\!52}{28\!\cdots\!51}a^{11}-\frac{71\!\cdots\!17}{28\!\cdots\!51}a^{10}-\frac{12\!\cdots\!66}{28\!\cdots\!51}a^{9}-\frac{14\!\cdots\!58}{28\!\cdots\!51}a^{8}-\frac{17\!\cdots\!83}{28\!\cdots\!51}a^{7}+\frac{19\!\cdots\!68}{28\!\cdots\!51}a^{6}-\frac{41\!\cdots\!20}{28\!\cdots\!51}a^{5}+\frac{27\!\cdots\!53}{28\!\cdots\!51}a^{4}-\frac{89\!\cdots\!09}{28\!\cdots\!51}a^{3}+\frac{11\!\cdots\!59}{28\!\cdots\!51}a^{2}+\frac{21\!\cdots\!68}{28\!\cdots\!51}a+\frac{36\!\cdots\!08}{28\!\cdots\!51}$, $\frac{38\!\cdots\!94}{28\!\cdots\!51}a^{19}-\frac{12\!\cdots\!07}{28\!\cdots\!51}a^{18}-\frac{94\!\cdots\!85}{28\!\cdots\!51}a^{17}+\frac{46\!\cdots\!56}{28\!\cdots\!51}a^{16}-\frac{13\!\cdots\!29}{28\!\cdots\!51}a^{15}+\frac{14\!\cdots\!69}{28\!\cdots\!51}a^{14}+\frac{44\!\cdots\!25}{28\!\cdots\!51}a^{13}-\frac{29\!\cdots\!96}{28\!\cdots\!51}a^{12}+\frac{10\!\cdots\!16}{28\!\cdots\!51}a^{11}-\frac{76\!\cdots\!18}{28\!\cdots\!51}a^{10}-\frac{15\!\cdots\!26}{28\!\cdots\!51}a^{9}-\frac{19\!\cdots\!52}{28\!\cdots\!51}a^{8}-\frac{23\!\cdots\!19}{28\!\cdots\!51}a^{7}-\frac{43\!\cdots\!98}{28\!\cdots\!51}a^{6}-\frac{49\!\cdots\!53}{28\!\cdots\!51}a^{5}+\frac{28\!\cdots\!19}{28\!\cdots\!51}a^{4}-\frac{45\!\cdots\!91}{28\!\cdots\!51}a^{3}+\frac{17\!\cdots\!82}{28\!\cdots\!51}a^{2}+\frac{22\!\cdots\!27}{28\!\cdots\!51}a+\frac{56\!\cdots\!51}{28\!\cdots\!51}$, $\frac{61\!\cdots\!38}{28\!\cdots\!51}a^{19}-\frac{19\!\cdots\!58}{28\!\cdots\!51}a^{18}-\frac{15\!\cdots\!86}{28\!\cdots\!51}a^{17}+\frac{74\!\cdots\!47}{28\!\cdots\!51}a^{16}-\frac{21\!\cdots\!56}{28\!\cdots\!51}a^{15}+\frac{22\!\cdots\!37}{28\!\cdots\!51}a^{14}+\frac{72\!\cdots\!75}{28\!\cdots\!51}a^{13}-\frac{44\!\cdots\!57}{28\!\cdots\!51}a^{12}+\frac{11\!\cdots\!81}{28\!\cdots\!51}a^{11}-\frac{12\!\cdots\!75}{28\!\cdots\!51}a^{10}-\frac{23\!\cdots\!42}{28\!\cdots\!51}a^{9}-\frac{31\!\cdots\!58}{28\!\cdots\!51}a^{8}-\frac{37\!\cdots\!05}{28\!\cdots\!51}a^{7}-\frac{57\!\cdots\!23}{28\!\cdots\!51}a^{6}-\frac{67\!\cdots\!25}{28\!\cdots\!51}a^{5}+\frac{51\!\cdots\!14}{28\!\cdots\!51}a^{4}-\frac{17\!\cdots\!69}{28\!\cdots\!51}a^{3}+\frac{17\!\cdots\!46}{28\!\cdots\!51}a^{2}+\frac{33\!\cdots\!69}{28\!\cdots\!51}a+\frac{60\!\cdots\!31}{28\!\cdots\!51}$, $\frac{61\!\cdots\!72}{28\!\cdots\!51}a^{19}-\frac{19\!\cdots\!57}{28\!\cdots\!51}a^{18}-\frac{14\!\cdots\!40}{28\!\cdots\!51}a^{17}+\frac{77\!\cdots\!84}{28\!\cdots\!51}a^{16}-\frac{22\!\cdots\!87}{28\!\cdots\!51}a^{15}+\frac{24\!\cdots\!03}{28\!\cdots\!51}a^{14}+\frac{70\!\cdots\!55}{28\!\cdots\!51}a^{13}-\frac{53\!\cdots\!19}{28\!\cdots\!51}a^{12}+\frac{16\!\cdots\!11}{28\!\cdots\!51}a^{11}-\frac{12\!\cdots\!44}{28\!\cdots\!51}a^{10}-\frac{23\!\cdots\!30}{28\!\cdots\!51}a^{9}-\frac{28\!\cdots\!61}{28\!\cdots\!51}a^{8}-\frac{33\!\cdots\!90}{28\!\cdots\!51}a^{7}-\frac{22\!\cdots\!20}{28\!\cdots\!51}a^{6}-\frac{59\!\cdots\!87}{28\!\cdots\!51}a^{5}+\frac{57\!\cdots\!96}{28\!\cdots\!51}a^{4}-\frac{11\!\cdots\!26}{28\!\cdots\!51}a^{3}+\frac{17\!\cdots\!23}{28\!\cdots\!51}a^{2}+\frac{33\!\cdots\!05}{28\!\cdots\!51}a+\frac{33\!\cdots\!74}{28\!\cdots\!51}$, $\frac{11\!\cdots\!40}{28\!\cdots\!51}a^{19}-\frac{10\!\cdots\!22}{28\!\cdots\!51}a^{18}+\frac{18\!\cdots\!60}{28\!\cdots\!51}a^{17}+\frac{34\!\cdots\!26}{28\!\cdots\!51}a^{16}-\frac{13\!\cdots\!10}{28\!\cdots\!51}a^{15}+\frac{27\!\cdots\!12}{28\!\cdots\!51}a^{14}-\frac{61\!\cdots\!78}{28\!\cdots\!51}a^{13}-\frac{10\!\cdots\!27}{28\!\cdots\!51}a^{12}+\frac{71\!\cdots\!22}{28\!\cdots\!51}a^{11}+\frac{47\!\cdots\!54}{28\!\cdots\!51}a^{10}+\frac{34\!\cdots\!34}{28\!\cdots\!51}a^{9}+\frac{21\!\cdots\!01}{28\!\cdots\!51}a^{8}+\frac{21\!\cdots\!76}{28\!\cdots\!51}a^{7}+\frac{24\!\cdots\!00}{28\!\cdots\!51}a^{6}-\frac{68\!\cdots\!15}{28\!\cdots\!51}a^{5}-\frac{46\!\cdots\!64}{28\!\cdots\!51}a^{4}-\frac{29\!\cdots\!11}{28\!\cdots\!51}a^{3}-\frac{54\!\cdots\!62}{28\!\cdots\!51}a^{2}-\frac{16\!\cdots\!23}{28\!\cdots\!51}a-\frac{16\!\cdots\!90}{28\!\cdots\!51}$, $\frac{43\!\cdots\!74}{28\!\cdots\!51}a^{19}-\frac{14\!\cdots\!45}{28\!\cdots\!51}a^{18}-\frac{83\!\cdots\!96}{28\!\cdots\!51}a^{17}+\frac{61\!\cdots\!95}{28\!\cdots\!51}a^{16}-\frac{17\!\cdots\!30}{28\!\cdots\!51}a^{15}+\frac{18\!\cdots\!74}{28\!\cdots\!51}a^{14}+\frac{55\!\cdots\!52}{28\!\cdots\!51}a^{13}-\frac{61\!\cdots\!41}{28\!\cdots\!51}a^{12}+\frac{25\!\cdots\!53}{28\!\cdots\!51}a^{11}-\frac{35\!\cdots\!25}{28\!\cdots\!51}a^{10}-\frac{21\!\cdots\!33}{28\!\cdots\!51}a^{9}-\frac{17\!\cdots\!25}{28\!\cdots\!51}a^{8}-\frac{19\!\cdots\!33}{28\!\cdots\!51}a^{7}-\frac{89\!\cdots\!61}{28\!\cdots\!51}a^{6}-\frac{88\!\cdots\!57}{28\!\cdots\!51}a^{5}+\frac{17\!\cdots\!93}{28\!\cdots\!51}a^{4}+\frac{61\!\cdots\!32}{28\!\cdots\!51}a^{3}+\frac{15\!\cdots\!49}{28\!\cdots\!51}a^{2}+\frac{41\!\cdots\!38}{28\!\cdots\!51}a+\frac{21\!\cdots\!74}{28\!\cdots\!51}$, $\frac{93\!\cdots\!23}{28\!\cdots\!51}a^{19}-\frac{39\!\cdots\!73}{28\!\cdots\!51}a^{18}+\frac{62\!\cdots\!16}{28\!\cdots\!51}a^{17}+\frac{14\!\cdots\!76}{28\!\cdots\!51}a^{16}-\frac{44\!\cdots\!84}{28\!\cdots\!51}a^{15}+\frac{67\!\cdots\!25}{28\!\cdots\!51}a^{14}+\frac{78\!\cdots\!45}{28\!\cdots\!51}a^{13}-\frac{19\!\cdots\!57}{28\!\cdots\!51}a^{12}+\frac{75\!\cdots\!59}{28\!\cdots\!51}a^{11}-\frac{18\!\cdots\!57}{28\!\cdots\!51}a^{10}-\frac{16\!\cdots\!36}{28\!\cdots\!51}a^{9}-\frac{50\!\cdots\!67}{28\!\cdots\!51}a^{8}+\frac{21\!\cdots\!14}{28\!\cdots\!51}a^{7}+\frac{58\!\cdots\!00}{28\!\cdots\!51}a^{6}+\frac{46\!\cdots\!20}{28\!\cdots\!51}a^{5}+\frac{18\!\cdots\!09}{28\!\cdots\!51}a^{4}-\frac{80\!\cdots\!18}{28\!\cdots\!51}a^{3}+\frac{68\!\cdots\!32}{28\!\cdots\!51}a^{2}+\frac{38\!\cdots\!11}{28\!\cdots\!51}a-\frac{39\!\cdots\!78}{28\!\cdots\!51}$, $\frac{16\!\cdots\!67}{28\!\cdots\!51}a^{19}-\frac{64\!\cdots\!01}{28\!\cdots\!51}a^{18}+\frac{69\!\cdots\!25}{28\!\cdots\!51}a^{17}+\frac{21\!\cdots\!78}{28\!\cdots\!51}a^{16}-\frac{73\!\cdots\!05}{28\!\cdots\!51}a^{15}+\frac{11\!\cdots\!62}{28\!\cdots\!51}a^{14}+\frac{13\!\cdots\!08}{28\!\cdots\!51}a^{13}-\frac{24\!\cdots\!58}{28\!\cdots\!51}a^{12}+\frac{18\!\cdots\!28}{28\!\cdots\!51}a^{11}-\frac{43\!\cdots\!79}{28\!\cdots\!51}a^{10}-\frac{39\!\cdots\!78}{28\!\cdots\!51}a^{9}-\frac{42\!\cdots\!80}{28\!\cdots\!51}a^{8}-\frac{54\!\cdots\!55}{28\!\cdots\!51}a^{7}+\frac{46\!\cdots\!23}{28\!\cdots\!51}a^{6}-\frac{20\!\cdots\!60}{28\!\cdots\!51}a^{5}+\frac{35\!\cdots\!78}{28\!\cdots\!51}a^{4}-\frac{11\!\cdots\!90}{28\!\cdots\!51}a^{3}+\frac{12\!\cdots\!57}{28\!\cdots\!51}a^{2}+\frac{67\!\cdots\!51}{28\!\cdots\!51}a-\frac{33\!\cdots\!40}{28\!\cdots\!51}$, $\frac{13\!\cdots\!00}{28\!\cdots\!51}a^{19}-\frac{53\!\cdots\!59}{28\!\cdots\!51}a^{18}+\frac{45\!\cdots\!63}{28\!\cdots\!51}a^{17}+\frac{20\!\cdots\!13}{28\!\cdots\!51}a^{16}-\frac{61\!\cdots\!71}{28\!\cdots\!51}a^{15}+\frac{88\!\cdots\!43}{28\!\cdots\!51}a^{14}+\frac{12\!\cdots\!24}{28\!\cdots\!51}a^{13}-\frac{27\!\cdots\!15}{28\!\cdots\!51}a^{12}+\frac{11\!\cdots\!08}{28\!\cdots\!51}a^{11}-\frac{20\!\cdots\!77}{28\!\cdots\!51}a^{10}-\frac{33\!\cdots\!05}{28\!\cdots\!51}a^{9}-\frac{11\!\cdots\!16}{28\!\cdots\!51}a^{8}-\frac{49\!\cdots\!47}{28\!\cdots\!51}a^{7}+\frac{54\!\cdots\!84}{28\!\cdots\!51}a^{6}-\frac{46\!\cdots\!62}{28\!\cdots\!51}a^{5}+\frac{16\!\cdots\!51}{28\!\cdots\!51}a^{4}-\frac{11\!\cdots\!64}{28\!\cdots\!51}a^{3}+\frac{50\!\cdots\!30}{28\!\cdots\!51}a^{2}+\frac{36\!\cdots\!65}{28\!\cdots\!51}a-\frac{74\!\cdots\!90}{28\!\cdots\!51}$, $\frac{75\!\cdots\!53}{28\!\cdots\!51}a^{19}-\frac{25\!\cdots\!98}{28\!\cdots\!51}a^{18}-\frac{14\!\cdots\!38}{28\!\cdots\!51}a^{17}+\frac{96\!\cdots\!30}{28\!\cdots\!51}a^{16}-\frac{28\!\cdots\!94}{28\!\cdots\!51}a^{15}+\frac{33\!\cdots\!83}{28\!\cdots\!51}a^{14}+\frac{84\!\cdots\!89}{28\!\cdots\!51}a^{13}-\frac{78\!\cdots\!04}{28\!\cdots\!51}a^{12}+\frac{33\!\cdots\!65}{28\!\cdots\!51}a^{11}-\frac{14\!\cdots\!83}{28\!\cdots\!51}a^{10}-\frac{28\!\cdots\!92}{28\!\cdots\!51}a^{9}-\frac{32\!\cdots\!46}{28\!\cdots\!51}a^{8}-\frac{39\!\cdots\!20}{28\!\cdots\!51}a^{7}-\frac{25\!\cdots\!54}{28\!\cdots\!51}a^{6}-\frac{10\!\cdots\!93}{28\!\cdots\!51}a^{5}+\frac{46\!\cdots\!79}{28\!\cdots\!51}a^{4}-\frac{16\!\cdots\!20}{28\!\cdots\!51}a^{3}+\frac{19\!\cdots\!14}{28\!\cdots\!51}a^{2}+\frac{39\!\cdots\!10}{28\!\cdots\!51}a+\frac{14\!\cdots\!22}{28\!\cdots\!51}$, $\frac{46\!\cdots\!12}{28\!\cdots\!51}a^{19}-\frac{13\!\cdots\!70}{28\!\cdots\!51}a^{18}-\frac{14\!\cdots\!46}{28\!\cdots\!51}a^{17}+\frac{56\!\cdots\!10}{28\!\cdots\!51}a^{16}-\frac{15\!\cdots\!47}{28\!\cdots\!51}a^{15}+\frac{14\!\cdots\!77}{28\!\cdots\!51}a^{14}+\frac{59\!\cdots\!24}{28\!\cdots\!51}a^{13}-\frac{28\!\cdots\!19}{28\!\cdots\!51}a^{12}+\frac{12\!\cdots\!41}{28\!\cdots\!51}a^{11}-\frac{84\!\cdots\!85}{28\!\cdots\!51}a^{10}-\frac{20\!\cdots\!91}{28\!\cdots\!51}a^{9}-\frac{25\!\cdots\!85}{28\!\cdots\!51}a^{8}-\frac{30\!\cdots\!60}{28\!\cdots\!51}a^{7}-\frac{87\!\cdots\!20}{28\!\cdots\!51}a^{6}-\frac{59\!\cdots\!46}{28\!\cdots\!51}a^{5}+\frac{10\!\cdots\!54}{28\!\cdots\!51}a^{4}-\frac{62\!\cdots\!55}{28\!\cdots\!51}a^{3}+\frac{63\!\cdots\!47}{28\!\cdots\!51}a^{2}+\frac{28\!\cdots\!56}{28\!\cdots\!51}a+\frac{79\!\cdots\!71}{28\!\cdots\!51}$, $\frac{30\!\cdots\!56}{28\!\cdots\!51}a^{19}-\frac{87\!\cdots\!89}{28\!\cdots\!51}a^{18}-\frac{11\!\cdots\!48}{28\!\cdots\!51}a^{17}+\frac{36\!\cdots\!24}{28\!\cdots\!51}a^{16}-\frac{94\!\cdots\!85}{28\!\cdots\!51}a^{15}+\frac{78\!\cdots\!68}{28\!\cdots\!51}a^{14}+\frac{41\!\cdots\!54}{28\!\cdots\!51}a^{13}-\frac{14\!\cdots\!68}{28\!\cdots\!51}a^{12}-\frac{36\!\cdots\!54}{28\!\cdots\!51}a^{11}-\frac{55\!\cdots\!54}{28\!\cdots\!51}a^{10}-\frac{14\!\cdots\!51}{28\!\cdots\!51}a^{9}-\frac{18\!\cdots\!50}{28\!\cdots\!51}a^{8}-\frac{21\!\cdots\!40}{28\!\cdots\!51}a^{7}-\frac{68\!\cdots\!88}{28\!\cdots\!51}a^{6}-\frac{23\!\cdots\!65}{28\!\cdots\!51}a^{5}+\frac{13\!\cdots\!35}{28\!\cdots\!51}a^{4}+\frac{11\!\cdots\!76}{28\!\cdots\!51}a^{3}+\frac{18\!\cdots\!37}{28\!\cdots\!51}a^{2}+\frac{23\!\cdots\!07}{28\!\cdots\!51}a+\frac{78\!\cdots\!80}{28\!\cdots\!51}$, $\frac{53\!\cdots\!48}{28\!\cdots\!51}a^{19}-\frac{16\!\cdots\!40}{28\!\cdots\!51}a^{18}-\frac{15\!\cdots\!17}{28\!\cdots\!51}a^{17}+\frac{66\!\cdots\!53}{28\!\cdots\!51}a^{16}-\frac{17\!\cdots\!89}{28\!\cdots\!51}a^{15}+\frac{17\!\cdots\!04}{28\!\cdots\!51}a^{14}+\frac{67\!\cdots\!87}{28\!\cdots\!51}a^{13}-\frac{41\!\cdots\!45}{28\!\cdots\!51}a^{12}+\frac{52\!\cdots\!42}{28\!\cdots\!51}a^{11}-\frac{92\!\cdots\!17}{28\!\cdots\!51}a^{10}-\frac{23\!\cdots\!58}{28\!\cdots\!51}a^{9}-\frac{26\!\cdots\!92}{28\!\cdots\!51}a^{8}-\frac{32\!\cdots\!64}{28\!\cdots\!51}a^{7}-\frac{67\!\cdots\!59}{28\!\cdots\!51}a^{6}-\frac{43\!\cdots\!42}{28\!\cdots\!51}a^{5}+\frac{15\!\cdots\!78}{28\!\cdots\!51}a^{4}+\frac{13\!\cdots\!72}{28\!\cdots\!51}a^{3}+\frac{63\!\cdots\!66}{28\!\cdots\!51}a^{2}+\frac{41\!\cdots\!19}{28\!\cdots\!51}a+\frac{35\!\cdots\!74}{28\!\cdots\!51}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 694101.729487 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{6}\cdot 694101.729487 \cdot 1}{2\cdot\sqrt{823067302269314181883621609}}\cr\approx \mathstrut & 0.190543716543 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 3*x^19 - 3*x^18 + 12*x^17 - 33*x^16 + 32*x^15 + 124*x^14 - 63*x^13 + 10*x^12 - 187*x^11 - 428*x^10 - 550*x^9 - 661*x^8 - 184*x^7 - 129*x^6 + 43*x^5 + 23*x^3 + 63*x^2 + 19*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr C_5$ (as 20T40):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\wr C_5$
Character table for $C_2\wr C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.28689149556397.1, 10.6.54232796893.1, 10.6.113395848049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed
Minimal sibling: 10.6.54232796893.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }^{2}$ ${\href{/padicField/3.5.0.1}{5} }^{4}$ ${\href{/padicField/5.10.0.1}{10} }^{2}$ ${\href{/padicField/7.5.0.1}{5} }^{4}$ R ${\href{/padicField/13.10.0.1}{10} }^{2}$ ${\href{/padicField/17.5.0.1}{5} }^{4}$ ${\href{/padicField/19.5.0.1}{5} }^{4}$ R ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{4}$ ${\href{/padicField/37.10.0.1}{10} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{10}$ ${\href{/padicField/47.5.0.1}{5} }^{4}$ ${\href{/padicField/53.10.0.1}{10} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.10.9.1$x^{10} + 110$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} + 110$$10$$1$$9$$C_{10}$$[\ ]_{10}$
\(23\) Copy content Toggle raw display 23.2.1.1$x^{2} + 115$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} + 115$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$