Normalized defining polynomial
\( x^{20} - 4 x^{19} + 20 x^{17} - 25 x^{16} + 22 x^{15} - 18 x^{14} + 149 x^{13} - 880 x^{12} + 1884 x^{11} - 3642 x^{10} + 6615 x^{9} - 8657 x^{8} + 8945 x^{7} - 8412 x^{6} + 7546 x^{5} + 579 x^{4} - 5330 x^{3} + 547 x + 67 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81693426134005631737181457408=2^{10}\cdot 3^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{67} a^{18} - \frac{13}{67} a^{17} + \frac{13}{67} a^{16} - \frac{18}{67} a^{15} - \frac{9}{67} a^{14} + \frac{32}{67} a^{13} + \frac{27}{67} a^{12} - \frac{5}{67} a^{11} - \frac{25}{67} a^{10} + \frac{16}{67} a^{9} + \frac{20}{67} a^{8} + \frac{14}{67} a^{7} - \frac{9}{67} a^{6} - \frac{1}{67} a^{5} - \frac{30}{67} a^{4} + \frac{14}{67} a^{3} + \frac{22}{67} a^{2} - \frac{16}{67} a$, $\frac{1}{711835037648307603749682659449626903097} a^{19} - \frac{3565824299736789856621884936271373344}{711835037648307603749682659449626903097} a^{18} + \frac{230151707656562478479184417648946745080}{711835037648307603749682659449626903097} a^{17} + \frac{225516632546430573943568504763189656362}{711835037648307603749682659449626903097} a^{16} - \frac{331268099161178082341377833759688868956}{711835037648307603749682659449626903097} a^{15} - \frac{33431231197333477271368427264108951712}{711835037648307603749682659449626903097} a^{14} - \frac{130352773152102799057934746907609705777}{711835037648307603749682659449626903097} a^{13} - \frac{77344758933889258585043079045520517582}{711835037648307603749682659449626903097} a^{12} + \frac{186890869843537289445426567706520430631}{711835037648307603749682659449626903097} a^{11} - \frac{250181548664640860683329899444051366678}{711835037648307603749682659449626903097} a^{10} - \frac{41981780320425420532830033956018181489}{711835037648307603749682659449626903097} a^{9} + \frac{287068571912694296686848879731034370726}{711835037648307603749682659449626903097} a^{8} + \frac{260793774792757199006519618890985499961}{711835037648307603749682659449626903097} a^{7} - \frac{52319903906732184628906745971560919501}{711835037648307603749682659449626903097} a^{6} + \frac{206275538894269200266785071133477000442}{711835037648307603749682659449626903097} a^{5} + \frac{224584836224568277225398265599333180750}{711835037648307603749682659449626903097} a^{4} - \frac{119955257789605007805098797534149247609}{711835037648307603749682659449626903097} a^{3} + \frac{113700547843843244807700369770467392036}{711835037648307603749682659449626903097} a^{2} + \frac{116604387019355997036370068835143747455}{711835037648307603749682659449626903097} a - \frac{2653576064378555693533312511782225946}{10624403546989665727607203872382491091}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5659848.98043 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n409 are not computed |
| Character table for t20n409 is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||