Normalized defining polynomial
\( x^{20} - 4 x^{19} - 7 x^{18} + 34 x^{17} + 70 x^{16} - 190 x^{15} - 655 x^{14} + 574 x^{13} + 3666 x^{12} + 792 x^{11} - 13227 x^{10} - 5906 x^{9} + 27504 x^{8} + 4624 x^{7} - 15466 x^{6} + 6186 x^{5} - 21731 x^{4} - 13714 x^{3} - 2079 x^{2} - 1100 x - 71 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81245087289215930838213658148864=2^{20}\cdot 17^{2}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2698708185482175733394540055896981108148887667} a^{19} - \frac{46486123964952135727606859446904285636172964}{899569395160725244464846685298993702716295889} a^{18} + \frac{854993312736879274547544839883541560150720329}{2698708185482175733394540055896981108148887667} a^{17} - \frac{398033804568757590942803645257661624669955976}{899569395160725244464846685298993702716295889} a^{16} + \frac{705400827332320952928327832897969157320230061}{2698708185482175733394540055896981108148887667} a^{15} + \frac{154378250528132860585049996055080636764895560}{899569395160725244464846685298993702716295889} a^{14} + \frac{365339016205483131598058280906081996581342645}{2698708185482175733394540055896981108148887667} a^{13} - \frac{11250116801618777233244705559462228439571549}{899569395160725244464846685298993702716295889} a^{12} + \frac{32471609732282265251110887514926333523495001}{899569395160725244464846685298993702716295889} a^{11} - \frac{374806544282559707586061691073856727395103302}{899569395160725244464846685298993702716295889} a^{10} - \frac{40366156409426107108539088260096333637641523}{299856465053575081488282228432997900905431963} a^{9} + \frac{89380933268254524782287905372686388720415102}{207592937344782748722656927376690854472991359} a^{8} - \frac{1032887199511943296601819411243913826758136607}{2698708185482175733394540055896981108148887667} a^{7} + \frac{93308246670651559577901454723096225598327291}{2698708185482175733394540055896981108148887667} a^{6} + \frac{351594176594064380122480660227677075483997079}{2698708185482175733394540055896981108148887667} a^{5} - \frac{367889504482914671628094118655318977457248054}{2698708185482175733394540055896981108148887667} a^{4} - \frac{15681181644692526221189476281231942687948916}{207592937344782748722656927376690854472991359} a^{3} + \frac{1036641817001130723504921787210331120862987346}{2698708185482175733394540055896981108148887667} a^{2} + \frac{1243629012606736620944480384125477409392116901}{2698708185482175733394540055896981108148887667} a + \frac{999378908862172285262820149387985210739308347}{2698708185482175733394540055896981108148887667}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243138699.043 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n848 are not computed |
| Character table for t20n848 is not computed |
Intermediate fields
| 5.5.160801.1, 10.8.26477528679424.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||