Normalized defining polynomial
\( x^{20} - 2 x^{19} - 9 x^{18} + 11 x^{17} + 29 x^{16} + 41 x^{15} - 129 x^{14} - 374 x^{13} + 49 x^{12} + 1607 x^{11} + 1660 x^{10} - 2011 x^{9} - 3885 x^{8} - 11 x^{7} + 4195 x^{6} + 1213 x^{5} - 2126 x^{4} - 1672 x^{3} + 248 x^{2} + 208 x - 32 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79692860778363999735970407424=2^{10}\cdot 11^{18}\cdot 241^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{6152} a^{18} - \frac{31}{1538} a^{17} - \frac{137}{6152} a^{16} + \frac{1349}{6152} a^{15} - \frac{53}{6152} a^{14} - \frac{1549}{6152} a^{13} + \frac{793}{6152} a^{12} + \frac{378}{769} a^{11} - \frac{2935}{6152} a^{10} + \frac{2565}{6152} a^{9} - \frac{783}{3076} a^{8} - \frac{439}{6152} a^{7} - \frac{3015}{6152} a^{6} + \frac{2707}{6152} a^{5} - \frac{1667}{6152} a^{4} + \frac{1955}{6152} a^{3} - \frac{331}{1538} a^{2} - \frac{85}{769} a - \frac{124}{769}$, $\frac{1}{13719138160089775867159746223376} a^{19} - \frac{374955315736783334473939595}{6859569080044887933579873111688} a^{18} + \frac{1027652446467253848400219992483}{13719138160089775867159746223376} a^{17} + \frac{1695954064806378521529979397639}{13719138160089775867159746223376} a^{16} - \frac{5735190173805715095488914036547}{13719138160089775867159746223376} a^{15} - \frac{611589997905326841463190184207}{13719138160089775867159746223376} a^{14} + \frac{2570399471715228210538009279471}{13719138160089775867159746223376} a^{13} + \frac{1333341114165308623399757317841}{6859569080044887933579873111688} a^{12} - \frac{764500495506501181680193859211}{13719138160089775867159746223376} a^{11} + \frac{2240211145354162437223401571931}{13719138160089775867159746223376} a^{10} + \frac{595682681684008029001589103017}{3429784540022443966789936555844} a^{9} + \frac{3796287976248320260211846582753}{13719138160089775867159746223376} a^{8} + \frac{6179215059583272582156361329903}{13719138160089775867159746223376} a^{7} + \frac{5650918302226277298951720672269}{13719138160089775867159746223376} a^{6} - \frac{2636759500559635347150180288293}{13719138160089775867159746223376} a^{5} + \frac{5417436250080927278503092016837}{13719138160089775867159746223376} a^{4} + \frac{365184917090729362259581860149}{6859569080044887933579873111688} a^{3} - \frac{818647840854628738784995744371}{3429784540022443966789936555844} a^{2} - \frac{464788189895097860530375920}{37280266739374390943368875607} a + \frac{123134505401579532794775550955}{857446135005610991697484138961}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7666043.93763 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.51660490321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||