Properties

Label 20.8.79144095554...3472.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{34}\cdot 7^{11}\cdot 13^{12}$
Root discriminant $44.15$
Ramified primes $2, 7, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T633

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-449, -4382, 711, 14100, -6254, 6790, -64174, 116060, -91520, 28612, 8841, -14064, 7593, -1744, -515, 530, -177, 24, 9, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 9*x^18 + 24*x^17 - 177*x^16 + 530*x^15 - 515*x^14 - 1744*x^13 + 7593*x^12 - 14064*x^11 + 8841*x^10 + 28612*x^9 - 91520*x^8 + 116060*x^7 - 64174*x^6 + 6790*x^5 - 6254*x^4 + 14100*x^3 + 711*x^2 - 4382*x - 449)
 
gp: K = bnfinit(x^20 - 6*x^19 + 9*x^18 + 24*x^17 - 177*x^16 + 530*x^15 - 515*x^14 - 1744*x^13 + 7593*x^12 - 14064*x^11 + 8841*x^10 + 28612*x^9 - 91520*x^8 + 116060*x^7 - 64174*x^6 + 6790*x^5 - 6254*x^4 + 14100*x^3 + 711*x^2 - 4382*x - 449, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 9 x^{18} + 24 x^{17} - 177 x^{16} + 530 x^{15} - 515 x^{14} - 1744 x^{13} + 7593 x^{12} - 14064 x^{11} + 8841 x^{10} + 28612 x^{9} - 91520 x^{8} + 116060 x^{7} - 64174 x^{6} + 6790 x^{5} - 6254 x^{4} + 14100 x^{3} + 711 x^{2} - 4382 x - 449 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(791440955544624095439021483753472=2^{34}\cdot 7^{11}\cdot 13^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.15$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{11}{23} a^{17} - \frac{6}{23} a^{16} - \frac{4}{23} a^{15} + \frac{10}{23} a^{14} + \frac{1}{23} a^{13} - \frac{1}{23} a^{12} + \frac{8}{23} a^{11} + \frac{10}{23} a^{10} - \frac{1}{23} a^{8} + \frac{5}{23} a^{7} - \frac{4}{23} a^{6} - \frac{6}{23} a^{5} + \frac{7}{23} a^{4} - \frac{1}{23} a^{3} + \frac{2}{23} a + \frac{11}{23}$, $\frac{1}{618888451746546847461011235620492671} a^{19} - \frac{11732118982576199680016318053116105}{618888451746546847461011235620492671} a^{18} - \frac{28468902350163966124228430064764887}{618888451746546847461011235620492671} a^{17} + \frac{314640994829944604004958493727514}{88412635963792406780144462231498953} a^{16} - \frac{98898807452504664352626024501038595}{618888451746546847461011235620492671} a^{15} - \frac{158337162360670622205075106279289179}{618888451746546847461011235620492671} a^{14} + \frac{291386723749895378801829403060990173}{618888451746546847461011235620492671} a^{13} + \frac{248942930485049672271230444052384790}{618888451746546847461011235620492671} a^{12} + \frac{212292759860394383346308860860503872}{618888451746546847461011235620492671} a^{11} + \frac{134155890434131811927900879960542391}{618888451746546847461011235620492671} a^{10} + \frac{179189477358525242808864982666106734}{618888451746546847461011235620492671} a^{9} + \frac{243832729799924724333788402772758361}{618888451746546847461011235620492671} a^{8} + \frac{4289233436162266899077990428536751}{618888451746546847461011235620492671} a^{7} + \frac{148545253511584619012992688221930156}{618888451746546847461011235620492671} a^{6} + \frac{174326649586209304644349011874638393}{618888451746546847461011235620492671} a^{5} - \frac{67000173693842036171646125114958436}{618888451746546847461011235620492671} a^{4} - \frac{6509951674726930785562295950469528}{618888451746546847461011235620492671} a^{3} + \frac{1015453440610525078740201710172765}{2389530701724119102166066546797269} a^{2} + \frac{44656120674287588233551603780293988}{618888451746546847461011235620492671} a + \frac{280489322320680163266906715804539633}{618888451746546847461011235620492671}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2296967329.26 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T633:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 40960
The 124 conjugacy class representatives for t20n633 are not computed
Character table for t20n633 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ R ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.8.6.3$x^{8} - 7 x^{4} + 147$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$