Properties

Label 20.8.78482770328...6441.1
Degree $20$
Signature $[8, 6]$
Discriminant $11^{18}\cdot 109^{4}$
Root discriminant $22.12$
Ramified primes $11, 109$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T331

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-131, 720, -293, -2681, 2714, 3123, -5024, -679, 3967, -1238, -1200, 897, -70, -168, 124, -21, -36, 19, 4, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 4*x^18 + 19*x^17 - 36*x^16 - 21*x^15 + 124*x^14 - 168*x^13 - 70*x^12 + 897*x^11 - 1200*x^10 - 1238*x^9 + 3967*x^8 - 679*x^7 - 5024*x^6 + 3123*x^5 + 2714*x^4 - 2681*x^3 - 293*x^2 + 720*x - 131)
 
gp: K = bnfinit(x^20 - 5*x^19 + 4*x^18 + 19*x^17 - 36*x^16 - 21*x^15 + 124*x^14 - 168*x^13 - 70*x^12 + 897*x^11 - 1200*x^10 - 1238*x^9 + 3967*x^8 - 679*x^7 - 5024*x^6 + 3123*x^5 + 2714*x^4 - 2681*x^3 - 293*x^2 + 720*x - 131, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} + 4 x^{18} + 19 x^{17} - 36 x^{16} - 21 x^{15} + 124 x^{14} - 168 x^{13} - 70 x^{12} + 897 x^{11} - 1200 x^{10} - 1238 x^{9} + 3967 x^{8} - 679 x^{7} - 5024 x^{6} + 3123 x^{5} + 2714 x^{4} - 2681 x^{3} - 293 x^{2} + 720 x - 131 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(784827703284623883644266441=11^{18}\cdot 109^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 109$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{77626931806166827294489029} a^{19} + \frac{6152322539438801471657827}{77626931806166827294489029} a^{18} - \frac{2656632138961388450149961}{25875643935388942431496343} a^{17} - \frac{9123180439222522075828078}{77626931806166827294489029} a^{16} - \frac{6025729755678991784614663}{77626931806166827294489029} a^{15} + \frac{10494948874761867028453528}{25875643935388942431496343} a^{14} - \frac{7096230770523637849058248}{25875643935388942431496343} a^{13} + \frac{34189315183906614786831763}{77626931806166827294489029} a^{12} - \frac{34664795356673304204660371}{77626931806166827294489029} a^{11} + \frac{2513784516426603795784211}{25875643935388942431496343} a^{10} - \frac{4886301943502248116157352}{25875643935388942431496343} a^{9} + \frac{37894821246050567810187460}{77626931806166827294489029} a^{8} + \frac{31163782723241178668078096}{77626931806166827294489029} a^{7} - \frac{28820337989237273338225819}{77626931806166827294489029} a^{6} - \frac{6584990367370453684604167}{25875643935388942431496343} a^{5} - \frac{30477507414634060248977981}{77626931806166827294489029} a^{4} - \frac{22671809019487381516922539}{77626931806166827294489029} a^{3} - \frac{16993762059345848795795995}{77626931806166827294489029} a^{2} + \frac{37494275976054352606574824}{77626931806166827294489029} a + \frac{27111234041117473486786130}{77626931806166827294489029}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 610290.965964 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T331:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 56 conjugacy class representatives for t20n331 are not computed
Character table for t20n331 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.23365118029.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
109Data not computed