Normalized defining polynomial
\( x^{20} - 5 x^{19} - 6 x^{18} + 76 x^{17} - 139 x^{16} - 44 x^{15} + 500 x^{14} - 799 x^{13} + 665 x^{12} - 216 x^{11} + 78 x^{10} - 216 x^{9} + 665 x^{8} - 799 x^{7} + 500 x^{6} - 44 x^{5} - 139 x^{4} + 76 x^{3} - 6 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7759664031689416767375792783616=2^{8}\cdot 17^{4}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{11} - \frac{3}{16} a^{9} + \frac{3}{8} a^{8} + \frac{3}{16} a^{7} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{5}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{8} a - \frac{7}{16}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{3}{16} a^{10} - \frac{1}{8} a^{9} + \frac{3}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{16} a^{6} + \frac{7}{16} a^{5} + \frac{3}{16} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{15074432} a^{18} + \frac{126513}{15074432} a^{17} - \frac{371}{115072} a^{16} + \frac{398349}{15074432} a^{15} - \frac{42423}{3768608} a^{14} - \frac{673225}{15074432} a^{13} + \frac{641677}{7537216} a^{12} - \frac{739865}{7537216} a^{11} + \frac{3145395}{15074432} a^{10} + \frac{158439}{3768608} a^{9} - \frac{7218277}{15074432} a^{8} - \frac{739865}{7537216} a^{7} - \frac{300475}{7537216} a^{6} - \frac{1615377}{15074432} a^{5} - \frac{513499}{3768608} a^{4} + \frac{5109109}{15074432} a^{3} - \frac{50715}{115072} a^{2} - \frac{815639}{15074432} a - \frac{942151}{15074432}$, $\frac{1}{361786368} a^{19} + \frac{1}{180893184} a^{18} - \frac{949223}{45223296} a^{17} + \frac{196651}{30148864} a^{16} + \frac{15084881}{361786368} a^{15} + \frac{7322521}{120595456} a^{14} - \frac{13963903}{361786368} a^{13} - \frac{4328155}{45223296} a^{12} + \frac{11822267}{120595456} a^{11} + \frac{703257}{4158464} a^{10} + \frac{29637037}{120595456} a^{9} - \frac{31500301}{120595456} a^{8} - \frac{745703}{45223296} a^{7} - \frac{138397607}{361786368} a^{6} + \frac{10877601}{120595456} a^{5} - \frac{3981283}{12475392} a^{4} - \frac{2187393}{30148864} a^{3} + \frac{6149447}{45223296} a^{2} + \frac{58409441}{180893184} a - \frac{5383465}{11670528}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134609507.091 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.3104644.1, 10.6.163859844234512.2, 10.6.163859844234512.1, 10.6.2785617351986704.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 881 | Data not computed | ||||||