Normalized defining polynomial
\( x^{20} - x^{19} - 9 x^{18} - x^{17} + 11 x^{16} + 51 x^{15} + 94 x^{14} - 515 x^{13} - 744 x^{12} + 2303 x^{11} + 2728 x^{10} - 2754 x^{9} - 3609 x^{8} - 1128 x^{7} + 1673 x^{6} + 1616 x^{5} - 1583 x^{4} + 722 x^{3} + 823 x^{2} - 404 x + 197 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(77062297047310879021301897401=11^{16}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{3}{23} a^{16} + \frac{1}{23} a^{15} - \frac{4}{23} a^{14} - \frac{10}{23} a^{13} - \frac{5}{23} a^{12} + \frac{6}{23} a^{11} - \frac{11}{23} a^{10} + \frac{10}{23} a^{9} - \frac{10}{23} a^{8} + \frac{11}{23} a^{7} - \frac{9}{23} a^{6} + \frac{6}{23} a^{4} + \frac{4}{23} a^{3} + \frac{10}{23} a^{2} + \frac{7}{23} a - \frac{10}{23}$, $\frac{1}{23} a^{18} - \frac{8}{23} a^{16} - \frac{7}{23} a^{15} + \frac{2}{23} a^{14} + \frac{2}{23} a^{13} - \frac{2}{23} a^{12} - \frac{6}{23} a^{11} - \frac{3}{23} a^{10} + \frac{6}{23} a^{9} - \frac{5}{23} a^{8} + \frac{4}{23} a^{7} + \frac{4}{23} a^{6} + \frac{6}{23} a^{5} + \frac{9}{23} a^{4} - \frac{2}{23} a^{3} - \frac{8}{23} a + \frac{7}{23}$, $\frac{1}{10748225862010306261066739207153642389} a^{19} + \frac{69705349101333871507991047947112232}{10748225862010306261066739207153642389} a^{18} + \frac{189794027306952393939485300599407856}{10748225862010306261066739207153642389} a^{17} - \frac{3977213012820345966210430626859373611}{10748225862010306261066739207153642389} a^{16} + \frac{57810040347595327128849731451963119}{467314167913491576568119095963201843} a^{15} - \frac{1218860679407953264411846677738533937}{10748225862010306261066739207153642389} a^{14} - \frac{2269013613302770941568560969262212082}{10748225862010306261066739207153642389} a^{13} + \frac{2081397521179189845838949390824522240}{10748225862010306261066739207153642389} a^{12} - \frac{5338084660721027945165475688765451571}{10748225862010306261066739207153642389} a^{11} + \frac{4528449242507305684147083789655446738}{10748225862010306261066739207153642389} a^{10} - \frac{3427424907588023661478213585715142542}{10748225862010306261066739207153642389} a^{9} + \frac{1256918723466745402217037374798065481}{10748225862010306261066739207153642389} a^{8} - \frac{2962245546558416606127623125427928387}{10748225862010306261066739207153642389} a^{7} + \frac{2720071764199902315980073405326440789}{10748225862010306261066739207153642389} a^{6} + \frac{3954683329992385931033071441314371631}{10748225862010306261066739207153642389} a^{5} - \frac{1785029427015807551948560297922182827}{10748225862010306261066739207153642389} a^{4} - \frac{1172719465743604015860731963360233211}{10748225862010306261066739207153642389} a^{3} + \frac{4372875401959834709593235089549064933}{10748225862010306261066739207153642389} a^{2} + \frac{3392544105845118407162735237833005747}{10748225862010306261066739207153642389} a - \frac{3106915709438171706463206080946798350}{10748225862010306261066739207153642389}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7510850.66348 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 28 conjugacy class representatives for t20n254 |
| Character table for t20n254 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.23365118029.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 109 | Data not computed | ||||||