Normalized defining polynomial
\( x^{20} + 28 x^{18} - 1608 x^{16} - 50062 x^{14} + 760301 x^{12} + 21133322 x^{10} - 140047794 x^{8} - 1761805932 x^{6} - 5607737608 x^{4} + 22693202096 x^{2} + 117865222327 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74891594867646330033252195969701773312=2^{40}\cdot 4903^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4903} a^{16} + \frac{28}{4903} a^{14} - \frac{1608}{4903} a^{12} - \frac{1032}{4903} a^{10} + \frac{336}{4903} a^{8} + \frac{1392}{4903} a^{6} + \frac{1498}{4903} a^{4} - \frac{1136}{4903} a^{2}$, $\frac{1}{4903} a^{17} + \frac{28}{4903} a^{15} - \frac{1608}{4903} a^{13} - \frac{1032}{4903} a^{11} + \frac{336}{4903} a^{9} + \frac{1392}{4903} a^{7} + \frac{1498}{4903} a^{5} - \frac{1136}{4903} a^{3}$, $\frac{1}{4050270313395767832328839412151778326415012049675859} a^{18} + \frac{44288351248187589762238616033738542415926094527}{4050270313395767832328839412151778326415012049675859} a^{16} + \frac{1066658765864713047873078473316408581694753876078402}{4050270313395767832328839412151778326415012049675859} a^{14} + \frac{384148024184776237177469839634272125998418310244062}{4050270313395767832328839412151778326415012049675859} a^{12} + \frac{1464766067353016503425511940689981339020560477581095}{4050270313395767832328839412151778326415012049675859} a^{10} + \frac{1487479672878303149391929171515796819620636854953739}{4050270313395767832328839412151778326415012049675859} a^{8} + \frac{1072022159203166970200406602233631805097341775615730}{4050270313395767832328839412151778326415012049675859} a^{6} + \frac{1738102601052727788156711349336401292651653753981859}{4050270313395767832328839412151778326415012049675859} a^{4} + \frac{405657688086454283647621571992058842329821215198}{826080014969563090419914218264690664167858872053} a^{2} - \frac{8092103752767303937924737961906489992660754}{168484604317675523234736736337893262118674051}$, $\frac{1}{4050270313395767832328839412151778326415012049675859} a^{19} + \frac{44288351248187589762238616033738542415926094527}{4050270313395767832328839412151778326415012049675859} a^{17} + \frac{1066658765864713047873078473316408581694753876078402}{4050270313395767832328839412151778326415012049675859} a^{15} + \frac{384148024184776237177469839634272125998418310244062}{4050270313395767832328839412151778326415012049675859} a^{13} + \frac{1464766067353016503425511940689981339020560477581095}{4050270313395767832328839412151778326415012049675859} a^{11} + \frac{1487479672878303149391929171515796819620636854953739}{4050270313395767832328839412151778326415012049675859} a^{9} + \frac{1072022159203166970200406602233631805097341775615730}{4050270313395767832328839412151778326415012049675859} a^{7} + \frac{1738102601052727788156711349336401292651653753981859}{4050270313395767832328839412151778326415012049675859} a^{5} + \frac{405657688086454283647621571992058842329821215198}{826080014969563090419914218264690664167858872053} a^{3} - \frac{8092103752767303937924737961906489992660754}{168484604317675523234736736337893262118674051} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 215314421387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.3.4903.1, 10.6.24616354816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 4903 | Data not computed | ||||||