Properties

Label 20.8.74478300488...0736.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{40}\cdot 11^{16}\cdot 23^{8}\cdot 199^{4}\cdot 331^{4}$
Root discriminant $878.22$
Ramified primes $2, 11, 23, 199, 331$
Class number $32$ (GRH)
Class group $[2, 2, 2, 2, 2]$ (GRH)
Galois group 20T331

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18412673999053943482324441, 0, -147763063047639772279068, 0, -10712944772094516747441, 0, -33560109862573395248, 0, 302048559639192771, 0, 1562655693365106, 0, 1452248809698, 0, -2948764734, 0, -5285397, 0, -1120, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 1120*x^18 - 5285397*x^16 - 2948764734*x^14 + 1452248809698*x^12 + 1562655693365106*x^10 + 302048559639192771*x^8 - 33560109862573395248*x^6 - 10712944772094516747441*x^4 - 147763063047639772279068*x^2 + 18412673999053943482324441)
 
gp: K = bnfinit(x^20 - 1120*x^18 - 5285397*x^16 - 2948764734*x^14 + 1452248809698*x^12 + 1562655693365106*x^10 + 302048559639192771*x^8 - 33560109862573395248*x^6 - 10712944772094516747441*x^4 - 147763063047639772279068*x^2 + 18412673999053943482324441, 1)
 

Normalized defining polynomial

\( x^{20} - 1120 x^{18} - 5285397 x^{16} - 2948764734 x^{14} + 1452248809698 x^{12} + 1562655693365106 x^{10} + 302048559639192771 x^{8} - 33560109862573395248 x^{6} - 10712944772094516747441 x^{4} - 147763063047639772279068 x^{2} + 18412673999053943482324441 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(74478300488702629539932974793088386039042768856289940340736=2^{40}\cdot 11^{16}\cdot 23^{8}\cdot 199^{4}\cdot 331^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $878.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23, 199, 331$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{1}{11} a^{8} - \frac{4}{11} a^{6} - \frac{3}{11} a^{4} + \frac{3}{11} a^{2} + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11} a^{9} - \frac{4}{11} a^{7} - \frac{3}{11} a^{5} + \frac{3}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{5}{11} a^{8} + \frac{1}{11} a^{6} - \frac{5}{11} a^{4} - \frac{2}{11} a^{2} - \frac{1}{11}$, $\frac{1}{11} a^{13} - \frac{5}{11} a^{9} + \frac{1}{11} a^{7} - \frac{5}{11} a^{5} - \frac{2}{11} a^{3} - \frac{1}{11} a$, $\frac{1}{724559} a^{14} - \frac{1120}{724559} a^{12} - \frac{15877}{724559} a^{10} - \frac{138949}{724559} a^{8} - \frac{75610}{724559} a^{6} - \frac{34830}{724559} a^{4} - \frac{111575}{724559} a^{2} - \frac{1}{11}$, $\frac{1}{724559} a^{15} - \frac{1120}{724559} a^{13} - \frac{15877}{724559} a^{11} - \frac{138949}{724559} a^{9} - \frac{75610}{724559} a^{7} - \frac{34830}{724559} a^{5} - \frac{111575}{724559} a^{3} - \frac{1}{11} a$, $\frac{1}{1097697465733} a^{16} - \frac{1120}{1097697465733} a^{14} - \frac{5285397}{1097697465733} a^{12} - \frac{2948764734}{1097697465733} a^{10} + \frac{55179307856}{1097697465733} a^{8} + \frac{233036912235}{1097697465733} a^{6} - \frac{461216693907}{1097697465733} a^{4} + \frac{149367}{724559} a^{2} - \frac{3}{11}$, $\frac{1}{1097697465733} a^{17} - \frac{1120}{1097697465733} a^{15} - \frac{5285397}{1097697465733} a^{13} - \frac{2948764734}{1097697465733} a^{11} + \frac{55179307856}{1097697465733} a^{9} + \frac{233036912235}{1097697465733} a^{7} - \frac{461216693907}{1097697465733} a^{5} + \frac{149367}{724559} a^{3} - \frac{3}{11} a$, $\frac{1}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{18} - \frac{136033622397625575794107056909708207979296503248204096667789751268913811900858267219676}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{16} + \frac{211160217282377630658067590998354889875643377501699280920982196909546624830738101548856588978}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{14} + \frac{20018489634853371990901979831259080447627170357952442639604827188418024271754931551489473714712131}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{12} + \frac{1296999811857907982906585476287173527058282660827089809110367257152407721309897249895155000634722}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{10} + \frac{27580178245235843535440417309955402006534590419751864039088908773599045061348382917730130368023976}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{8} - \frac{25420153096228197297459777663653812084359362192187924523106697914360869102133660104660855683519393}{477295678310647473314508123608136050973622088523313693813225100824272481238605827074818807282782077} a^{6} + \frac{3010051516616800319383853691831238203701498345709582399288982352637008005246478618187589455431}{7246135182113702550737192360718032017696064742493641831714844628342201661458437612151676923633} a^{4} - \frac{817332401568457587113924993215925950163002454845351921134046151878124006435857911145842}{4782968554920736977107521292735866392052251763542289030674748118856598546032697054266259} a^{2} - \frac{12222347232548521214933863816130431675275857149347846692103878086558994503714956494}{72613347020916318406344734134962826095010578019133264975553722067385242618419849311}$, $\frac{1}{20523714167357841352523849315149850191865749806502488833968679335443716693260050564217208713159629311} a^{19} - \frac{1440479591921462933187067409474035405811728802396101105033630147320713415364321100201383}{20523714167357841352523849315149850191865749806502488833968679335443716693260050564217208713159629311} a^{17} + \frac{10752454188933629856843354776728546234804218963485678498973762306650872511598890070324235262466}{20523714167357841352523849315149850191865749806502488833968679335443716693260050564217208713159629311} a^{15} + \frac{876031095399619347788749412971605268859026365964018863367933880316655010810567436662703626292139190}{20523714167357841352523849315149850191865749806502488833968679335443716693260050564217208713159629311} a^{13} + \frac{618831867448647914108581953431836868762266407061860734652540606224564228122992237423549866380786490}{20523714167357841352523849315149850191865749806502488833968679335443716693260050564217208713159629311} a^{11} + \frac{6388176448313686214777959327304079181965607912026256500540200904067628766627968821889110356278291106}{20523714167357841352523849315149850191865749806502488833968679335443716693260050564217208713159629311} a^{9} + \frac{309472917102700202690741052055266268063273329901866566671012575262278223246949907923958591317633544}{892335398580775710979297796310863051820249991587064731911681710236683334489567415835530813615636057} a^{7} + \frac{144247170073590143774243628559326112834609663338764750953842185843612111532039039066143917985119}{311583812830889209681699271510875376760930783927226598763738319018714671442712817322522107716219} a^{5} - \frac{38170225617117344643732034839635168392665757964382385502793682990728728926314031975505031}{205667647861591690015623415587642254858246825832318428319014169110833737479405973333449137} a^{3} + \frac{1090180284812271949135936190778305200858066554595675357936757175118289688885022755773}{3122373921899401691472823567803401522085454854822730393948810048897565432592053520373} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 246612959891000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T331:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 56 conjugacy class representatives for t20n331 are not computed
Character table for t20n331 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.2670699013250048.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.3.1$x^{4} + 46$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$199$$\Q_{199}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 2$$1$$1$$0$Trivial$[\ ]$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.4.2.2$x^{4} - 199 x^{2} + 237606$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
199.4.2.2$x^{4} - 199 x^{2} + 237606$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
331Data not computed