Normalized defining polynomial
\( x^{20} + 3 x^{18} - 4 x^{17} - 19 x^{16} + 30 x^{15} - 25 x^{14} + 76 x^{13} + 61 x^{12} - 182 x^{11} + 72 x^{10} - 361 x^{9} + 685 x^{8} - 83 x^{7} - 808 x^{6} + 1015 x^{5} - 576 x^{4} - 234 x^{3} + 331 x^{2} - 26 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706993550892760357993595389=11^{16}\cdot 109^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{67} a^{18} + \frac{10}{67} a^{17} + \frac{11}{67} a^{16} - \frac{10}{67} a^{15} + \frac{8}{67} a^{14} + \frac{25}{67} a^{13} + \frac{25}{67} a^{12} - \frac{31}{67} a^{11} - \frac{3}{67} a^{10} + \frac{27}{67} a^{9} + \frac{15}{67} a^{8} - \frac{15}{67} a^{7} + \frac{26}{67} a^{6} + \frac{16}{67} a^{5} - \frac{25}{67} a^{4} + \frac{30}{67} a^{3} + \frac{14}{67} a^{2} + \frac{27}{67} a - \frac{17}{67}$, $\frac{1}{98543148732622962785205597049} a^{19} - \frac{665125539393151075943148989}{98543148732622962785205597049} a^{18} - \frac{34317448808303638723130471428}{98543148732622962785205597049} a^{17} - \frac{3933345725355941113893757560}{98543148732622962785205597049} a^{16} + \frac{22046601307595237175718203585}{98543148732622962785205597049} a^{15} - \frac{28345009718506198476693800510}{98543148732622962785205597049} a^{14} + \frac{34294135222512917342292026465}{98543148732622962785205597049} a^{13} + \frac{10859341482263066533465042285}{98543148732622962785205597049} a^{12} + \frac{1218500959749966230511561160}{98543148732622962785205597049} a^{11} + \frac{28391426815652063196118710777}{98543148732622962785205597049} a^{10} - \frac{8685340392921720162301176230}{98543148732622962785205597049} a^{9} - \frac{44033851901828216851336468788}{98543148732622962785205597049} a^{8} - \frac{334692938756337608635859769}{4284484727505346208052417263} a^{7} - \frac{4512976583471119164039226196}{98543148732622962785205597049} a^{6} - \frac{34373138176298353856952762906}{98543148732622962785205597049} a^{5} - \frac{47427643850166583047905479116}{98543148732622962785205597049} a^{4} + \frac{29818905712470943655393424339}{98543148732622962785205597049} a^{3} + \frac{3421019726254824169351547751}{98543148732622962785205597049} a^{2} - \frac{31493794275108388338067381377}{98543148732622962785205597049} a + \frac{143892458917170349313504018}{4284484727505346208052417263}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 591384.592085 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.23365118029.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |