Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} - 56 x^{17} + 324 x^{16} - 356 x^{15} - 1572 x^{14} + 2528 x^{13} + 2818 x^{12} - 1914 x^{11} - 7776 x^{10} + 2496 x^{9} + 4883 x^{8} - 4924 x^{7} - 4056 x^{6} + 5314 x^{5} + 2774 x^{4} - 2944 x^{3} + 612 x^{2} + 962 x - 347 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706388839731582814105670315409408=2^{30}\cdot 3^{15}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{418156295984677137369926895223487971108334729} a^{19} - \frac{156442614801603195834916818010204602503631299}{418156295984677137369926895223487971108334729} a^{18} + \frac{152602985319966762426694205853328537100902470}{418156295984677137369926895223487971108334729} a^{17} + \frac{122382131173016828906461503202255843882957555}{418156295984677137369926895223487971108334729} a^{16} - \frac{168463022659712166181378528280517937569149776}{418156295984677137369926895223487971108334729} a^{15} - \frac{28730043432631396157675433503955987619189242}{418156295984677137369926895223487971108334729} a^{14} + \frac{188659535481080018091662851726782499436922622}{418156295984677137369926895223487971108334729} a^{13} - \frac{125152113383071514537709551224044695505497015}{418156295984677137369926895223487971108334729} a^{12} - \frac{185689696922632967947145383470970373898019867}{418156295984677137369926895223487971108334729} a^{11} + \frac{59258946417785037627048811971005139666189927}{418156295984677137369926895223487971108334729} a^{10} - \frac{149146353546106637285031592747733981313334041}{418156295984677137369926895223487971108334729} a^{9} - \frac{180889328340577948831354630339776052325189697}{418156295984677137369926895223487971108334729} a^{8} - \frac{6110656338155564243118852946437711583472898}{418156295984677137369926895223487971108334729} a^{7} - \frac{146696621639851764521656994500290653648075244}{418156295984677137369926895223487971108334729} a^{6} - \frac{6183670434147157389909784552508666792194340}{418156295984677137369926895223487971108334729} a^{5} - \frac{146330877794181376402452662428918055475980249}{418156295984677137369926895223487971108334729} a^{4} - \frac{122631628527063205634651769077239528570385237}{418156295984677137369926895223487971108334729} a^{3} - \frac{6641677407928936832449453929902585721289775}{32165868921898241336148222709499074700641133} a^{2} + \frac{33778447215558379215847041442712478619606458}{418156295984677137369926895223487971108334729} a - \frac{124369068677760809317156850400400258963416991}{418156295984677137369926895223487971108334729}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 667852533.879 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 71.10.9.7 | $x^{10} + 568$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |