Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} - 32 x^{17} + 114 x^{16} - 68 x^{15} + 60 x^{14} - 580 x^{13} - 257 x^{12} + 306 x^{11} + 3570 x^{10} - 4440 x^{9} - 13642 x^{8} - 12022 x^{7} + 7998 x^{6} + 27772 x^{5} - 14092 x^{4} - 2680 x^{3} + 1380 x^{2} + 278 x + 13 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706388839731582814105670315409408=2^{30}\cdot 3^{15}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{108667129437596384441727616860824004538169167} a^{19} + \frac{19673043391591786179728304582281221885108981}{108667129437596384441727616860824004538169167} a^{18} + \frac{14322421598331395750585368361212030655410821}{108667129437596384441727616860824004538169167} a^{17} + \frac{28877019956543614430850399582576651441063409}{108667129437596384441727616860824004538169167} a^{16} + \frac{34403568789457000203927384721972939151734039}{108667129437596384441727616860824004538169167} a^{15} - \frac{50542726054369788033616620478283993139544516}{108667129437596384441727616860824004538169167} a^{14} + \frac{28074737655480872498425042807015599025569207}{108667129437596384441727616860824004538169167} a^{13} + \frac{12351246419892943197436674662166244835216489}{108667129437596384441727616860824004538169167} a^{12} + \frac{9524929537614511640595701995390004255062753}{108667129437596384441727616860824004538169167} a^{11} + \frac{28270174324758001019291679027428541479924754}{108667129437596384441727616860824004538169167} a^{10} + \frac{8622544575676484022504158016504213418329075}{108667129437596384441727616860824004538169167} a^{9} - \frac{50955057333343565053836807701955486479390797}{108667129437596384441727616860824004538169167} a^{8} - \frac{10745858393082755379274530010804349733805887}{108667129437596384441727616860824004538169167} a^{7} - \frac{332971971173941510589306612427153032693133}{108667129437596384441727616860824004538169167} a^{6} - \frac{16768103800478757907696738594302768294299397}{108667129437596384441727616860824004538169167} a^{5} - \frac{24462211440482035547635160790714545782526579}{108667129437596384441727616860824004538169167} a^{4} + \frac{21745624251291500498761001996336530971388511}{108667129437596384441727616860824004538169167} a^{3} + \frac{16449136321605779058849502969675918584287958}{108667129437596384441727616860824004538169167} a^{2} - \frac{20956690722738686181428229914215788419107846}{108667129437596384441727616860824004538169167} a - \frac{29574434893335480378643649042396961479577470}{108667129437596384441727616860824004538169167}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 637726535.732 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 71.10.9.7 | $x^{10} + 568$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |