Properties

Label 20.8.69654621282...6096.6
Degree $20$
Signature $[8, 6]$
Discriminant $2^{10}\cdot 11^{16}\cdot 23^{6}$
Root discriminant $24.67$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T751

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-131, 1913, -11202, 33723, -54931, 43095, 926, -33420, 25813, -3347, -7341, 5526, -793, -894, 568, -85, -62, 31, -5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 5*x^18 + 31*x^17 - 62*x^16 - 85*x^15 + 568*x^14 - 894*x^13 - 793*x^12 + 5526*x^11 - 7341*x^10 - 3347*x^9 + 25813*x^8 - 33420*x^7 + 926*x^6 + 43095*x^5 - 54931*x^4 + 33723*x^3 - 11202*x^2 + 1913*x - 131)
 
gp: K = bnfinit(x^20 - 2*x^19 - 5*x^18 + 31*x^17 - 62*x^16 - 85*x^15 + 568*x^14 - 894*x^13 - 793*x^12 + 5526*x^11 - 7341*x^10 - 3347*x^9 + 25813*x^8 - 33420*x^7 + 926*x^6 + 43095*x^5 - 54931*x^4 + 33723*x^3 - 11202*x^2 + 1913*x - 131, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 5 x^{18} + 31 x^{17} - 62 x^{16} - 85 x^{15} + 568 x^{14} - 894 x^{13} - 793 x^{12} + 5526 x^{11} - 7341 x^{10} - 3347 x^{9} + 25813 x^{8} - 33420 x^{7} + 926 x^{6} + 43095 x^{5} - 54931 x^{4} + 33723 x^{3} - 11202 x^{2} + 1913 x - 131 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6965462128295683654948996096=2^{10}\cdot 11^{16}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{4}{23} a^{17} - \frac{10}{23} a^{16} - \frac{7}{23} a^{15} + \frac{2}{23} a^{14} - \frac{8}{23} a^{13} + \frac{2}{23} a^{12} - \frac{6}{23} a^{11} + \frac{10}{23} a^{10} + \frac{10}{23} a^{9} - \frac{4}{23} a^{8} - \frac{4}{23} a^{7} + \frac{7}{23} a^{6} - \frac{4}{23} a^{5} + \frac{9}{23} a^{4} + \frac{2}{23} a^{3} - \frac{3}{23} a^{2} - \frac{2}{23} a + \frac{5}{23}$, $\frac{1}{50350309969859164011297723865007503} a^{19} - \frac{257922753087127731237107170881784}{50350309969859164011297723865007503} a^{18} + \frac{24601927093664290365217634347741865}{50350309969859164011297723865007503} a^{17} - \frac{19631461171978244516050048628524337}{50350309969859164011297723865007503} a^{16} - \frac{13684402167320174167479395002785602}{50350309969859164011297723865007503} a^{15} + \frac{5472899658485072456234698685332616}{50350309969859164011297723865007503} a^{14} - \frac{3112048338497318867149901292898619}{50350309969859164011297723865007503} a^{13} + \frac{20604747544606350072535583223709212}{50350309969859164011297723865007503} a^{12} - \frac{22072089713889459950910367951308723}{50350309969859164011297723865007503} a^{11} + \frac{1019954243524962644200418200439761}{50350309969859164011297723865007503} a^{10} - \frac{17407557670297656924144362871280613}{50350309969859164011297723865007503} a^{9} + \frac{22633373561609714747363993221741632}{50350309969859164011297723865007503} a^{8} - \frac{16291865917646728654397360603611532}{50350309969859164011297723865007503} a^{7} + \frac{18198407609042236933991494188455744}{50350309969859164011297723865007503} a^{6} + \frac{5334061459346877508500388439158146}{50350309969859164011297723865007503} a^{5} + \frac{4581562966159824911703295227985893}{50350309969859164011297723865007503} a^{4} + \frac{7411980455759838038316752923784765}{50350309969859164011297723865007503} a^{3} + \frac{11078341456541852619984770592810184}{50350309969859164011297723865007503} a^{2} + \frac{7604145918000962284254952171592380}{50350309969859164011297723865007503} a - \frac{19883999606376744116488689289356262}{50350309969859164011297723865007503}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2011461.40936 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T751:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n751 are not computed
Character table for t20n751 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.4930254263.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
2.10.10.5$x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$