Normalized defining polynomial
\( x^{20} - 8 x^{19} + 16 x^{18} + 36 x^{17} - 207 x^{16} + 336 x^{15} - 205 x^{14} + 170 x^{13} - 910 x^{12} + 1976 x^{11} - 1654 x^{10} - 442 x^{9} + 2245 x^{8} - 2032 x^{7} + 454 x^{6} + 582 x^{5} - 487 x^{4} + 112 x^{3} + 15 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(677291336864611819508989952=2^{20}\cdot 11^{16}\cdot 14057\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 14057$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{4}{11} a^{17} - \frac{4}{11} a^{16} + \frac{3}{11} a^{15} - \frac{3}{11} a^{14} + \frac{4}{11} a^{13} - \frac{1}{11} a^{12} - \frac{4}{11} a^{11} + \frac{2}{11} a^{10} - \frac{2}{11} a^{9} + \frac{2}{11} a^{8} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} + \frac{5}{11} a^{4} - \frac{3}{11} a^{3} - \frac{2}{11} a^{2} - \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{21079371871555635077} a^{19} - \frac{930625672769150562}{21079371871555635077} a^{18} + \frac{8275600351960608913}{21079371871555635077} a^{17} - \frac{381546802206806222}{1916306533777785007} a^{16} - \frac{45391622467970803}{490217950501293839} a^{15} - \frac{5298504098215021167}{21079371871555635077} a^{14} - \frac{7622232869011543484}{21079371871555635077} a^{13} + \frac{1173266544003222150}{21079371871555635077} a^{12} + \frac{9367357418593866482}{21079371871555635077} a^{11} - \frac{6465986944850293108}{21079371871555635077} a^{10} + \frac{10157236601210439923}{21079371871555635077} a^{9} + \frac{9202332727285816238}{21079371871555635077} a^{8} - \frac{6610072847363470904}{21079371871555635077} a^{7} - \frac{3934469084821368675}{21079371871555635077} a^{6} + \frac{8051935224026894051}{21079371871555635077} a^{5} + \frac{8000619380878021445}{21079371871555635077} a^{4} - \frac{10246750305720384782}{21079371871555635077} a^{3} + \frac{9370227037068900111}{21079371871555635077} a^{2} - \frac{2488738048224405305}{21079371871555635077} a + \frac{4116474581938635328}{21079371871555635077}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 671493.479319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n749 are not computed |
| Character table for t20n749 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.219503494144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 14057 | Data not computed | ||||||