Normalized defining polynomial
\( x^{20} - 10 x^{18} + 45 x^{16} - 200 x^{14} + 410 x^{12} - 1340 x^{10} + 650 x^{8} - 3400 x^{6} + 9525 x^{4} - 5450 x^{2} + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(671088640000000000000000000000=2^{48}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{2} + \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{3} + \frac{3}{8} a$, $\frac{1}{320} a^{10} - \frac{1}{64} a^{8} + \frac{1}{32} a^{6} + \frac{3}{32} a^{4} + \frac{13}{64} a^{2} - \frac{1}{2} a - \frac{17}{64}$, $\frac{1}{320} a^{11} - \frac{1}{64} a^{9} + \frac{1}{32} a^{7} + \frac{3}{32} a^{5} + \frac{13}{64} a^{3} - \frac{1}{2} a^{2} - \frac{17}{64} a$, $\frac{1}{320} a^{12} - \frac{3}{64} a^{8} - \frac{5}{64} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{5}{64}$, $\frac{1}{320} a^{13} - \frac{3}{64} a^{9} - \frac{5}{64} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{5}{64} a - \frac{1}{2}$, $\frac{1}{640} a^{14} - \frac{1}{640} a^{12} - \frac{1}{640} a^{10} + \frac{5}{128} a^{8} - \frac{9}{128} a^{6} - \frac{7}{128} a^{4} - \frac{1}{2} a^{3} + \frac{49}{128} a^{2} - \frac{1}{2} a - \frac{57}{128}$, $\frac{1}{1280} a^{15} - \frac{1}{1280} a^{14} + \frac{1}{1280} a^{13} - \frac{1}{1280} a^{12} - \frac{1}{1280} a^{11} + \frac{1}{1280} a^{10} - \frac{1}{256} a^{9} + \frac{1}{256} a^{8} + \frac{23}{256} a^{7} + \frac{9}{256} a^{6} + \frac{15}{256} a^{5} + \frac{17}{256} a^{4} + \frac{17}{256} a^{3} - \frac{113}{256} a^{2} + \frac{93}{256} a - \frac{61}{256}$, $\frac{1}{6400} a^{16} - \frac{1}{640} a^{12} + \frac{19}{320} a^{8} - \frac{1}{8} a^{7} + \frac{3}{40} a^{6} - \frac{1}{8} a^{5} + \frac{29}{128} a^{4} + \frac{3}{8} a^{3} + \frac{3}{8} a^{2} + \frac{3}{8} a + \frac{91}{256}$, $\frac{1}{6400} a^{17} - \frac{1}{640} a^{13} + \frac{19}{320} a^{9} + \frac{3}{40} a^{7} - \frac{1}{8} a^{6} - \frac{3}{128} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{101}{256} a - \frac{3}{8}$, $\frac{1}{2291200} a^{18} + \frac{41}{2291200} a^{16} - \frac{37}{229120} a^{14} + \frac{241}{229120} a^{12} - \frac{99}{114560} a^{10} - \frac{1}{16} a^{9} - \frac{563}{28640} a^{8} - \frac{1}{8} a^{7} + \frac{25973}{229120} a^{6} - \frac{1}{8} a^{5} + \frac{8099}{45824} a^{4} + \frac{1}{8} a^{3} - \frac{42029}{91648} a^{2} - \frac{5}{16} a + \frac{1439}{91648}$, $\frac{1}{2291200} a^{19} + \frac{41}{2291200} a^{17} - \frac{37}{229120} a^{15} + \frac{241}{229120} a^{13} - \frac{99}{114560} a^{11} - \frac{563}{28640} a^{9} - \frac{1}{16} a^{8} + \frac{25973}{229120} a^{7} - \frac{3357}{45824} a^{5} - \frac{1}{4} a^{4} + \frac{3795}{91648} a^{3} + \frac{1}{4} a^{2} + \frac{24351}{91648} a + \frac{1}{16}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73814480.5605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 13 conjugacy class representatives for t20n201 |
| Character table for t20n201 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.4.163840000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.22.38 | $x^{8} + 2 x^{4} + 16 x + 52$ | $4$ | $2$ | $22$ | $C_8:C_2$ | $[2, 3, 4]^{2}$ | |
| 2.8.22.38 | $x^{8} + 2 x^{4} + 16 x + 52$ | $4$ | $2$ | $22$ | $C_8:C_2$ | $[2, 3, 4]^{2}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |