Normalized defining polynomial
\( x^{20} - 4 x^{19} - 12 x^{18} + 64 x^{17} - 47 x^{16} - 112 x^{15} + 52 x^{14} + 772 x^{13} + 819 x^{12} - 2776 x^{11} - 1954 x^{10} + 344 x^{9} + 9798 x^{8} - 4600 x^{7} - 3608 x^{6} - 6376 x^{5} + 12252 x^{4} - 2904 x^{3} - 3544 x^{2} + 2192 x - 356 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(663305172009703483445153131134976=2^{48}\cdot 31^{6}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{1048179271868089650708370528244} a^{19} + \frac{113340308947458784565866157617}{1048179271868089650708370528244} a^{18} - \frac{59157909825914418556501886957}{1048179271868089650708370528244} a^{17} - \frac{37302785207330731140575285905}{524089635934044825354185264122} a^{16} - \frac{110413855977635718599264184253}{524089635934044825354185264122} a^{15} - \frac{105977738619800813558039146401}{524089635934044825354185264122} a^{14} + \frac{185985749672291121595147129779}{1048179271868089650708370528244} a^{13} - \frac{237874523302581973873811119085}{1048179271868089650708370528244} a^{12} + \frac{35258138556014305530464988869}{1048179271868089650708370528244} a^{11} + \frac{55485424961569952094176634998}{262044817967022412677092632061} a^{10} + \frac{48402130318617123081937445505}{262044817967022412677092632061} a^{9} + \frac{100893503676852255577163488955}{262044817967022412677092632061} a^{8} + \frac{201423534950230179410786678609}{524089635934044825354185264122} a^{7} - \frac{128829101505838593300053401805}{524089635934044825354185264122} a^{6} - \frac{63228650321662332113672672973}{524089635934044825354185264122} a^{5} - \frac{58152486773219782551457026806}{262044817967022412677092632061} a^{4} + \frac{125638077452037785961642557677}{262044817967022412677092632061} a^{3} - \frac{29210523091045195855935285122}{262044817967022412677092632061} a^{2} - \frac{38376793208467987845159760714}{262044817967022412677092632061} a + \frac{83962588970093177415274091788}{262044817967022412677092632061}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2085443653.74 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.26.27 | $x^{12} - 2 x^{10} + 4 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||