Normalized defining polynomial
\( x^{20} - 3 x^{19} - 19 x^{18} + 104 x^{17} + 46 x^{16} - 816 x^{15} - 377 x^{14} + 5750 x^{13} + 481 x^{12} - 23572 x^{11} - 5409 x^{10} + 29390 x^{9} + 61815 x^{8} + 58301 x^{7} - 79450 x^{6} - 129539 x^{5} - 98958 x^{4} + 12864 x^{3} + 90298 x^{2} + 75365 x + 16369 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6593371018023678808268905753944157=397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6969} a^{18} - \frac{334}{6969} a^{17} - \frac{2954}{6969} a^{16} + \frac{1051}{2323} a^{15} - \frac{2455}{6969} a^{14} + \frac{2842}{6969} a^{13} + \frac{1580}{6969} a^{12} + \frac{1996}{6969} a^{11} + \frac{70}{303} a^{10} - \frac{2630}{6969} a^{9} - \frac{3083}{6969} a^{8} - \frac{1687}{6969} a^{7} + \frac{944}{6969} a^{6} + \frac{296}{6969} a^{5} - \frac{2380}{6969} a^{4} + \frac{991}{6969} a^{3} - \frac{2552}{6969} a^{2} - \frac{496}{2323} a - \frac{3313}{6969}$, $\frac{1}{532479981631529841356599143229793613743389597180317} a^{19} - \frac{19868542728657546298475523968665121327840385805}{532479981631529841356599143229793613743389597180317} a^{18} + \frac{4883286673528585901778982580032255332723587109958}{532479981631529841356599143229793613743389597180317} a^{17} + \frac{47308481148757614155043521290722421460140735542685}{177493327210509947118866381076597871247796532393439} a^{16} - \frac{264931546878788349033805754476018283918374808324443}{532479981631529841356599143229793613743389597180317} a^{15} + \frac{241294410610982562818936309885835141611749619423266}{532479981631529841356599143229793613743389597180317} a^{14} + \frac{87618152166502728618986372125741427646081378508}{5272079026054750904520783596334590235083065318617} a^{13} - \frac{208812504209824919126149763865339749712528191964071}{532479981631529841356599143229793613743389597180317} a^{12} - \frac{14992134177735081147296495716396481984835712823296}{532479981631529841356599143229793613743389597180317} a^{11} + \frac{90555633490011457367669745812190643069484328407719}{532479981631529841356599143229793613743389597180317} a^{10} + \frac{107437140563722674959688577527262450508959322064721}{532479981631529841356599143229793613743389597180317} a^{9} - \frac{122213438703431114877598255453006168944711022167397}{532479981631529841356599143229793613743389597180317} a^{8} + \frac{99184729438843470943893582311684722431336788896640}{532479981631529841356599143229793613743389597180317} a^{7} + \frac{259524222700285155974284744320181562097705144332141}{532479981631529841356599143229793613743389597180317} a^{6} + \frac{106060970004684467369232665120508288421090454308694}{532479981631529841356599143229793613743389597180317} a^{5} - \frac{154960182041352625972004929555846310514236875612853}{532479981631529841356599143229793613743389597180317} a^{4} - \frac{94078938989932707092617632170678815041603904056050}{532479981631529841356599143229793613743389597180317} a^{3} + \frac{52257246888185645096612611128055394789910693791194}{177493327210509947118866381076597871247796532393439} a^{2} - \frac{55347947490480856560830493675557053904231031424099}{532479981631529841356599143229793613743389597180317} a + \frac{67323160089189492338486742467472566282861500228980}{177493327210509947118866381076597871247796532393439}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2188103870.28 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||